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Abstract

I use the versatile PHOENIX atmosphere modeling code, which includes a gravity scaled
chromosphere above the temperature minimum to model the Ca II K emission line profile
for solar type stars, all with Teff =5,780 K and same turbulence broadening, only with
different surface gravities. Models, which produce the modest emission observed in rel-
atively inactive stars, reproduce the Wilson-Bappu effect (WBE) in absolute terms, i.e.
the emission line-widths grow with lower gravity consistent with W0 ∝ g−0.17 in the range
of log(g) = 5.0 to 3.5.

In the solar case, which was used as a first test, I find the temperature minimum
(over height, single component) for a relatively inactive Sun to reach down to 3,930 K.
The respective PHOENIX model (log(g) = 4.4) matches width and typical flux of the
chromospheric Ca II emission of a nearly inactive Sun, as observed with the Hamburg
Robotic Telescope, and also matches the solar W0 of 0.44 Å. For comparison, the quiet
Sun model (figure 1.3) of Vernazza et al. (1973) had a temperature minimum of 4,170 K.

Using the solar effective temperature, I then computed models with different gravity in
order to see if these would reproduce the WBE. A practical problem occurs in that the
shallow basal flux emission is too smeared out at already log(g) = 3.5. Consequently, I
needed to make the bottom of the chromosphere (just above the temperature minimum)
a little warmer to mimic the emission of modestly active stars, which in fact represent the
stars observed for the WBE. But the equilibrium conditions allow only for a small margin
on this.

I do not adjust any other parameter than surface gravity to obtain the emission line
profiles. Hence, these are produced from first principles and so represent a good test of the
WBE explanation given by Ayres et al. (1975), 40 years ago. As a result, the line widths
reproduce the observed WBE gravity dependence with an exponent of -0.17 (rather than
-0.25) very well and in absolute terms.
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1
Introduction

1.1. Motivation
The Wilson-Bappu effect describes the observed increase of the width of the chromo-
spheric Ca II (as well as Mg II) emission lines of cool stars and giants with increasing
luminosity and hence, decreasing gravity. This is a well-defined relation, which hardly
depends on any other parameters, and that can be derived from inactive or active stars.

Despite the WB effect was discovered 57 years ago, and it has been understood in princi-
ple since 40 years, it has still not been modeled precisely because (1) chromospheric models
are in general not trivial and require a good photospheric model to start with, and (2)
the easier to observe emission of active stars is known to not follow the WB effect reliably.

The stellar and planetary atmosphere code package PHOENIX has been developed
and steadily improved over two decades. It can calculate atmospheres all across the HR-
diagram as well as rapidly expanding atmospheres as found in novae and supernovae.
The PHOENIX code comes with a very rich opacity library (including molecules), and a
state-of-the-art equation of state, hence, it is capable of handling very cool temperatures
as those found in giant stars.

In addition, the PHOENIX code manages atmospheres in spherical geometry and also
accounts for extreme NLTE conditions, which are both important issues for modeling
chromospheres of giants. Furthermore, this code already has a mode to include a chro-
mosphere in a semi-empirical way in the stellar spectra. This chromospheric mode has
been successfully applied by modeling M-dwarf chromospheres.

Well-tested, accurate photospheric PHOENIX models already exist for cool giants, but
these artificially end in the temperature minimum. Hence, all weak and medium photo-
spheric lines are matched excellently. But emission from the chromospheres, as observed
in the very strongest lines such as Ca II K, caused by the outwardly increasing tempera-
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1. Introduction

ture in the chromospheric layers, has so far been left unconsidered.

The fundamental nature of this problem and since no quantitative chromospheric mod-
els exist so far, make the Wilson-Bappu effect a problem that has fascinating the experts
in the field since it was first discovered. In addition, it has neither been reproduced to
fully match the observational evidence.

Today’s much improved knowledge of stellar activity, accurate distances and compu-
tational power allow us to revise and improve the observed Wilson-Bappu effect and to
finally use it as a principal guide and benchmark-test for models of the inactive chromo-
sphere, which is governed by relatively simple equilibrium physics.

This work aims on reproducing a very modest emission of stars with different gravities
not much above the basal flux by using the chromospheric extension of the PHOENIX
code.

1.2. Stellar atmospheres

If we imagine a star as a family of spherical layers of different radii sorted one next to
another, we can study it by regions formed by a certain number of these layers. Of course
this is only a simplification, and although we study stars by regions, all of them are in-
teracting with each other and cannot be completely physically detached. Following this
scheme, from the core outward are the radiative zone, the convection zone, the photo-
sphere, the chromosphere, a transition region, and a corona (figure 1.1). The atmosphere
is the region surrounding a star and it goes from the photosphere through the corona.

This region is of great importance because it is a transition region between the interior
of a star and the interstellar medium. At the same time, the atmosphere is subdivided
into smaller sections which are a function of kinetic temperature1: sub-photosphere, pho-
tosphere, chromosphere, transition region, and corona.

The radiation transmitted into space from a star, which is the one we see and measure,
is emitted from the photosphere. This is the region where deep layers (towards the core)
of a star start to be visible, i.e., it is the outermost opaque layer but its opacity (τ) is
smaller than 1. The radiation emitted in deeper zones than the photosphere will not
escape and will not reach us because the high temperatures and densities do not allow
the material within it to leave, and material in the outer zones having low density and
τ � 1 will hardly emit radiation.

1Temperature of atoms due to their random velocities.
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Figure 1.1.: Scheme of solar interior structure. The zones are labeled as follows: 1) Stellar
core, 2) Radiative zone, 3) Convective zone, 4)Photosphere, and 5) Chromosphere. The corona
is the region surrounding the chromosphere, and the transition region is located between them.
The scheme is not scaled.

The temperature drops across the photosphere until a minimum temperature value is
reached, which is the beginning of the chromosphere. After that point, temperatures will
rapidly increase with height (h). The photosphere’s height or thickness varies for different
kinds of stars as h ∝ g−1, where g is the surface gravity. For the Sun this value is of about
1,000 kilometers and its density is around 10−8g/cm3.

Although the stellar radiation we receive comes from photospheres, the energy itself is
produce in deeper zones of the stellar interior, where nuclear reactions take place. For the
energy to reach the optically thin region, it has to be transported to outer zones by means
of convection or radiation. But convection is not always possible, its viability is determined
by the Schwarzschild criterion2 which establishes that the radiative temperature gradient
has to be smaller than the adiabatic temperature gradient to assure convection:∣∣∣∣∣dTdr

∣∣∣∣∣
ad

<

∣∣∣∣∣dTdr
∣∣∣∣∣
rad

(1.1)

2Proposed by K. Schwarzschild in 1906.
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1. Introduction

Furthermore, convection does not always occur at central zones but can be present in
the outer zones as well. For hot stars (T ∼ 10, 000 K), central convection is seen due to
the high luminosities produced at their cores, while for cool stars like the Sun (Teff =5,780
K) convection is more likely to be present at outer zones.

When the density gradient (1
ρ
dρ
dr

) is much more steeper than the temperature gradient
( 1
T
dT
dr

), we can write

1
ρ

dρ

dr
� 1

T

dT

dr
(1.2)

But increasing density will have a direct effect on the gas pressure (Pgas), and the same
goes for the temperature gradient with radiation pressure (Prad). Hence, equation (1.2)
can be rewritten as

Pgas � Prad (1.3)

On the other hand, if we assume to have an ideal gas in the atmosphere, the internal
energy of such gas will be in the form of kinetic energy. In addition, any change in internal
energy will be accompanied by a change in temperature. Following this assumption, the
ideal gas law tells us that

PV = nRT

→ P = nRT

V

→ P = m

M

RT

V

→ P = ρRT

M

(1.4)

where n is the molar number, m is the mass of the gas, M its molar mass, V the
volume it occupies, T the temperature and R the gas constant. Equation (1.4) is par-
ticularly interesting because it links the three more important parameters of gases (ρTP ).

In statistical mechanics, while working with particles, the gas constant is equivalent
to R = NAκ, with κ and NA being the Boltzmann and Avogadro constant, respectively.
The latter can also be represented as NA = M/mu, where M is the molar mass constant
and mu is the atomic mass unit. Hence, for a particle of mass µ times the atomic mass,
equation (1.4) is

P = κTρ
1

µmu

(1.5)

where ρ = nM/V is the mass density of the particle. Furthermore, from hydrostatic
equilibrium we know that dP

dr
= −ρ(r)g, feeding (1.5) into this:

12



1. Introduction

d

dr

[
κTρ

1
µmu

]
= −ρ(r)g

→ κTρ
1

µmu

dρ

dr
= −ρ(r)g

→ dρ

dr
= −gµmu

1
κT

ρ(r)

(1.6)

The solution to (1.6) is an exponential function modulated by the initial value ρ0 =
ρ(r0), where the scale height is defined as h0 = gµmu

κT
and h = r − r0. This equation is

shown below, and it is known as the Barometric Law.

ρ(r) = ρ0e
h/h0 (1.7)

The Barometric Law tells us that for each distance h0, density will change by a factor
of e. In giant stars, which have big scale heights, one find very low densities if compared
with MSS. The solar scale height is about h0 ∼ 300 km.

1.3. Model atmosphere

Analyzing stellar spectra provides the opportunity to study stars and to get a great
amount of information about the physical state of their atmospheres. Although energy
production takes place in the core of stars, all the radiation we measure has to first pass
through an atmosphere. This process will throw light on the factors not only of the core
but of the entire atmosphere as well.

Some examples of stellar parameters determined from spectra are radial velocity, which
is gotten by measuring the shifted lines due to the Doppler effect, effective temperature3 by
observing certain absorption lines that are representative of temperature ranges because
their atomic transitions can only exist at such energy extend or by finding the maximum
intensity to apply Wien’s law (see figure 1.2), and chemical composition, between others.

3Temperature of a black body having the same luminosity and radius as the star.
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Figure 1.2.: Scheme of Wien’s law. The curves represent Planck’s functions for the different
indicated effective temperatures, while the black dots indicate the respective wavelengths at
which the emission has its maximum.

All of the above measurements require thorough analysis, and a meticulous interpreta-
tion cannot be made in some cases. It is then when we are encouraged to make physical
assumptions and create hypothesis trying to reproduce and, even more important, to ex-
plain the features concerning the incoming radiation. Such hypothesis are turned into a
model which must obey physical laws and match observations that will be basically used
to test it. If needed, the model is modified to bear accurate resemblance to the available
observations and once that has been done, one can think in using it to reproduce phe-
nomena. Furthermore, when a model is worth of trust, it may also be used to understand
properties of stars that in other cases would remain as an enigma. It has to be established
then, that theoretical models are elemental in modern astrophysics.

In the case of model photospheres, one often refers to a “classical model atmosphere”
where only the photosphere is being calculated and not the chromosphere, transition
region, nor stellar winds. However with the increase of research in the field, the develop-
ment of new and modern codes, and the increasing computer power, nowadays it is hard
to label one model as the classical one. Nonetheless, the most common way to produce
such models is to assume energy conservation, hydrostatic equilibrium, LTE, and plane
parallel geometry or spherical symmetry for geometrically extended stars.

How valid and reliable these assumptions are will depend on the desired degree of detail
we are working with, and on many more physical properties that can be included without
producing an inconsistent model. A clear example of the latter is the so-called line blan-
keting, which causes models to give the impression of being blue shifted with respect to
observations, specially for cool stars where the red/infrared part of the spectrum appears

14



1. Introduction

enhanced relative to a star with a non-blanketed spectrum.

On the other hand, since the line formation problem consists in solving two equations
simultaneously, it is one of the biggest challenges when modeling photospheres. In order
to get through this, it is necessary to apply numerical methods that allow us to solve (1)
the radiative transfer equation for all the wavelengths we are interested in and (2) the
equation of statistical equilibrium when NLTE is used, i.e., the line source function; the
analogous for LTE is the Boltzmann equation (A.6). The implementation of Accelerated
Lambda Iteration (ALI) methods, well described by Hubeny (2003), is very popular in
stellar atmosphere modeling to obtain a formal solution of such problem due to the high
degree of complexity and accuracy it offers.

1.4. Chromospheres

A stellar chromosphere is a region within the atmosphere of a star where the temperature
increases outwards after a minimum temperature value (Tmin) is reached in the upper part
of the photosphere and it is found in cool late type stars of spectral type F, G, K, and M.
This effect is known as temperature reversal and can be detected through spectral analy-
sis, specially in lines whose optical depth is high in the chromosphere and whose behavior
within it differs from that within the photosphere (Zirin, 1971). Carrying on this spectral
analysis one would be able to tell wether a line has been formed in the chromosphere and
hence prove the existence of a temperature reversal. The region in the atmosphere where
this effect is seen is also known as reversing layer.

A value of about 4,300 K for the temperature minimum for the Sun was proposed by
Avrett and Linsky (1970), who solved the hydrostatic and ionization equilibrium equations
to produce a solar atmospheric model; they also found the chromosphere’s properties to
be relevant in the shaping of the wings of singly ionized calcium (Ca II). In a similar way
and although some large error bars on observations, the Harvard Smithsonian Reference
Atmosphere (Gingerich et al., 1971) predicts a 4,170 K minimum; such model is consistent
with observational data on different wavelengths including ultraviolet, visible and infrared
spectrum.

But probably the most famous chromosphere model is that of Vernazza et al. (1973),
who determined an empirical temperature distribution for the solar atmosphere, the ”so-
called” VAL models. They adopted a slightly smaller value for the temperature minimum
than the previous models, setting it to 4,000±100 K in order to have a spectrum that
agrees with solar observations between 505 Å and 1.5 cm.

15



1. Introduction

Figure 1.3.: Solar atmosphere temperature-height distribution as determined by Vernazza et al.
(1973). Height is given in kilometers measured above zero point where τ = 1. Regions of line
formation are also indicated. From right to left: photosphere, temperature minimum (4,100 K),
chromosphere, transition region (> 8, 500 K), Lyman valley (20,000 K), and corona.

This model was obtained by trial-and-error temperature adjustments and it includes
some arbitrary values in regions where spectra provided little information about the tem-
perature structure (region between 1,000 and 2,200 km in figure 1.3), as well as a relatively
low temperature maximum in the chromosphere of 8,500 K. Despite these assumptions,
this model is by far the most accepted and cited model atmosphere to date.

1.4.1. Physics of chromospheres
As we saw in the previous section, the dependence of h0 on g it is mainly determined
by the properties of the particles within the photosphere. But when we move outwards
through the chromosphere, gravity will play an important role in the way density changes
and the consequences of it.

In the chromosphere, low density values turn out into lower collision rates that can
be compared with radiative rates. In this case, pressure is mostly caused by turbulent
motions and can be calculated from the kinetic energy (EK) that produces such motions:

EK = 1
2mv

2

→ EK = 1
2(ρV )v2

→ P = 1
2v

2ρ

(1.8)
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where P = EK
V

, v is the turbulent velocity, m the mass of the particles and V the
volume they occupy. Assuming hydrostatic equilibrium

(
dP
dr

= −ρ(r)g
)

we get

dρ

dr
= −2g

v2 ρ (1.9)

whose solution is given by

ρ(r) = ρ0e
− 2g
v2 h (1.10)

Hence, scale heights for chromospheres
(
h0 = v2

2g

)
go up with lower gravity and densities

become smaller.

But what makes the presence of a chromosphere possible? First of all, a temperature re-
versal indicates that atmospheres holding chromospheres are not in radiative equilibrium
as thought before, i.e., temperatures do not diminish radially through the atmosphere,
and a responsible physical mechanism for this reversal has not yet been fully determined,
but well studied. However, the more relevant processes for chromospheric heating have
been determined to be magnetic heating by magnetic field dissipation and acoustic waves
by shock dissipation, alone or both together (Narain and Ulmschneider, 1990; Ulmschnei-
der, 2003; Kraft et al., 1964). Chromospheres lose large amounts of energy by radiation,
hence their heating mechanism has to be effective enough to prevent them from cooling.

Heating by dissipation of acoustical waves has been extensively supported in the liter-
ature since the discovered of such high temperatures in the atmospheres. Acoustic waves
are supposed to be generated by convective motions in the upper zones of the photosphere.
These waves propagate naturally in an outward direction and carry certain amount of en-
ergy that depends on their velocity (v) and density (ρ) (Narain and Ulmschneider, 1990):

F = v2ρcs (1.11)

where F is the mechanical energy flux and cs the sound speed. As the outer zones
of the atmosphere have smaller densities, the waves’ amplitude will increase, which can
also be translated as an increment of transported energy, forming shocks and heating the
surrounding medium.

The most significant way in which magnetic fields promote the heating of chromospheres
is by direct dissipation forced by large scale magnetic flows. The idea is that when they
encounter smaller magnetic zones (like sunspots) sufficiently close to produce an effect on
them, the fields immersed in these regions will be shrunk together causing dissipation of
magnetic energy (Ulmschneider, 2003).
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Activity is also used to study the properties of phenomena within the chromosphere.
The most important parameter for measuring activity is without doubt the Mount Wilson
S-index, whose measurements began with the Mount Wilson HK-Project in 1966 (Wilson,
1978). The S-index was defined with a four-channel spectrophotometer that was built
specially for the measurement of stellar chromospheric calcium emission (Vaughan et al.,
1978). It is a composition of these channels as follows:

S = α
NH +NK

NV +NR

(1.12)

where NH , NK , NV , and NR are the photon counts in the H and K line cores, in 4001.07
Å, and in 3901.07 Å, respectively. Moreover, the S-index has been used to calculate ac-
tivity periods, to classify variable and ciclic stars (Baliunas et al., 1995).

So far we have seen some aspects of the chromosphere that are very important to
construct such a structure and to understand the basics of its behavior. But how does the
physics of the photosphere differs from that of the chromosphere?. There are a few things
which have to be treated in a different way between them because, since the physical
conditions are different, we cannot just apply the same rules neither expect the same laws
to define the environment. Those aspects are to be listed in table 1.1.
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Photosphere Lower chromosphere Upper chromosphere

High density values (∼ 10−7gr/cm3) Low density values (∼ 10−11gr/cm3) Extremely low density values (∼ 10−14gr/cm3)

Collisional rate � Radiative rates Collisional rate ∼ Radiative rates Collisional rate � Radiative rates

C21,C12 �B12,B21 C21,C12 ∼B12,B21 C21,C12 �B12,B21

LTE: Te− = Texc = Tion = Trad Near LTE: Te− ∼ Texc ∼ Tion 6= Trad non-LTE: Te− 6= other temperatures

Sν = Bν(T ) Sν = εBν(T ) + (ε− 1)Jν Sν ∼ Jν

Maxwell distribution is valid Maxwell distribution is valid Maxwell distribution is valid

Boltzmann equation is valid Boltzmann equation is valid Boltzmann equation is not valid

Saha equation is valid Saha equation is valid Saha equation is not valid

Planck radiation is true Planck radiation is not true Planck radiation is not true

Pgas � Ekin

V ol Pgas ∼ Ekin

V ol Pgas � Ekin

V ol

Total redistribution Partial redistribution Partial redistribution

Plane parallel geometry is valid Plane parallel geometry is not valid for giants Extreme non-plane parallel geometry (Rchr � R∗)

Table 1.1.: Differences in physics between photosphere and chromosphere.

19
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1.4.2. Chromospheric lines

Since the chromosphere is a very thin layer (in terms of density), it can only radiate in
the very strong emission lines. The most prominent characteristic lines of a chromosphere
are Hα, Mg II (h+k), and Ca II (H+K). First spotted by Joseph Fraunhofer in 1814,
the resonance doublet lines4 H and K of singly ionized calcium at 3,968 Å and 3,933 Å,
respectively, are the deepest and broadest absorption lines in the visible solar spectrum;
K being more representative since the H line can be affected by surrounding atomic lines.
Further more, both of them can be used as a tool of spectral classification, as they are
characteristic for late type stars.

Both of them (H+K) are the only resonance lines in the visible solar spectrum pro-
duced by an ionized abundant element (Linsky and Avrett, 1970). In addition, their line
formation process takes place in the upper photosphere and lower chromosphere, so they
allow us to study such an important region in more detail. For cool stars, emission at
the center of these lines can be seen in areas surrounding magnetic features, like sunspots.

In most of the stars whose spectra are known to show Ca II features, the emission tends
to be weaker than the continuum spectrum outside the absorption wings. This emission
represents chromospheric radiation, while the absorption is produced by the upper zone
(or last strata) of the photosphere. But in general, the center of a line is formed at cooler
and higher regions in the atmosphere, while the wings depend on hotter and deeper layers
(see figure A.1).

A main difference between spectral lines produced in the photosphere and in the chro-
mosphere is that the latter produces emission lines instead of absorption lines. This can be
easily explained in terms of the temperature profile of the atmosphere: along the photo-
sphere and in an outward direction, temperature decreases until a minimum temperature
value, that indicates the beginning of the chromosphere, is reached as shown in figure 1.3.
Since the emitted radiation from the inner photosphere have to pass through cooler gas
to reach us, the atoms of this gas will create absorption lines.

On the other hand, when they traverse the inverted temperature gradient of the chro-
mosphere which have low density, we will get emission lines in the spectrum. A good
example of this is illustrated in figure 1.4, where the aspect of the Hα line varies with the
position of the measurement relative to the center of the Sun. In particular, the Ca II H
and K emission lines have been studied by several authors, and Linsky and Avrett (1970)
gave a good extensive description of their observational features focused in the solar case.

4Spectral line caused by a transition between the ground state and the first energy level of an atom.
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1. Introduction

Figure 1.4.: Aspect of the solar Hα emission line relative to the position of the measurement
in the solar disk; the numbers indicate greater distance from the center, Pos #1 corresponds
to the center of the solar disk and Pos #4 to the outer zone of the chromosphere. Taken from
observations of Jean-Pierre Rozelot in the Pic du Midi observatory in 2009.

These aspects can also vary with other physical parameters like temperature, amount
of present atoms or gravity. The effects of surface gravity can be visible in stellar spectra,
specifically, in their lines. At a given temperature, a line will be more pressure broadened
if the surface gravity is larger. Pressure broadening refers to the increase of spectral line
widths caused by collisions between the atoms that produce the lines.

The equivalent line width (W0) is a very common quantity used to describe spectral
lines and it is useful to compare their strengths between each other. Its definition is given
in terms of the fluxes at the continuum (F0) and at the line (Fλ) as follows

W0 ≡
∫ b

a

(
1− Fλ

F0

)
dλ (1.13)

where the interval āb should cover those wavelengths for which 1− Fλ
F0

is different from
zero. To measure it, one must first calculate the area of the spectral line with respect to
the continuum level and then replace the line profile with a rectangle of same intensity
and area; the width W0 of such rectangle corresponds to the equivalent line width (see
figure 1.5).

In the figure, the upper panel represents a case where there is a continuum for reference
but this is not the case for pure emission lines. Hence, the presence of the continuum
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1. Introduction

as a reference indicates there should be absorption as well, which turns into a problem
since emission and absorption start mixing. It is logical to think then, that the respective
equivalent widths will also be mixed and the components may be cancelled.

Therefore, if the concept of equivalent width cannot be applied, one needs to model
and work with the entire profile of the lines just as in the case of calcium lines.

But the shape of spectral lines do not depend only on broadening processes related to
the abundance of the elements, but also on the details of photon absorption in terms of
the amount of matter encountered along the way (i.e., the column mass density) and on
scattering.

The column mass density is given by the amount of mass of a certain specie present
along a path. It has units of mass over area and its expression is

σ =
∫ b

a
ρ(z)dz (1.14)

where ρ is the volumetric mass density and z represents a height direction.

If we increase the amount of present atoms, the intensity of pressure broadening will
increase as well. This results in a growing line width that can be so important to even
contribute to the wings of lines, see figure 4.1(b).

Of all these parameters, the most relevant and important one for this work is with no
doubt surface gravity. The mentioned H and K lines have the particularity of varying
their line widths with different surface gravities, an effect known as the Wilson-Bappu
relation. This phenomena has been studied over the past ∼ 60 years and numerous ob-
servational evidence is available in the literature, but it has never been fully reproduced
neither quantitative chromospheric models exist so far.

The current work aims to revisit, reproduce and improve the calibration of the Wilson-
Bappu effect, described in chapter §2, with models of inactive chromospheres of different
gravities. Chapter §3 is dedicated to illustrate the generalities of the stellar and planetary
atmosphere code PHOENIX, which is used to compute the synthetic spectra needed to
measure the Ca II K width lines.

In chapter §4, the methodology of this work is described and the results are presented,
which are discussed in §5.
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Figure 1.5.: Equivalent line width of spectral lines. Wavelength and intensity are given in
arbitrary units. The background level represents a value of zero intensity.
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2
The Wilson-Bappu effect

2.1. Discovery and history

The Wilson-Bappu effect is a remarkable empirical relation between the width (W0) of
the K emission line of Ca II and the absolute visual magnitude (MV ) of late-type stars.
It was first discovered by O.C. Wilson and M.K. Vain-Bappu in 1957 (Wilson and Bappu,
1957) while doing high dispersion spectral analysis.

To achieve this, they used 185 spectra of late type stars of which about 24 spectrograms
of 10 Å/mm dispersion were taken a few years earlier with a coudé spectrograph at the
Mount Wilson Observatory, located at Pasadena, California. Further observations were
included into the sample in order to have homogeneous material. All the stars in the final
sample had spectrograms made at Mount Wilson or at Palomar Observatory.

The line widths were measured for stars of spectral type G, K, and M , taking care of
discard underexposed plates. Then they were corrected for instrumental width; in general,
line widths ranged between 33 − 39 km/s and 15 km/s were subtracted from each one
to account for this correction. When their logarithms were plotted against the respective
visual absolute magnitude1, a defined straight line was found (figure 2.1).

1Based on the Yerkes absolute spectroscopic magnitudes.
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2. The Wilson-Bappu effect

Figure 2.1.: K line widths plotted against Yerkes’ MV by Wilson and Bappu (1957). The solid
line is the best linear adjustment drawn by eye and the dashed ones indicate ±10% error in the
measurement of W0. This plot includes all the stars in the original sample, distinguished by
spectral types G, K, and M.

Even though at the time no theory relating MV and W0 was available, Wilson and
Bappu (1957) found the width of the K emission line to be determined solely by the
absolute magnitude of the star, being independent of spectral type (and hence effective
temperature), intensity, and valid over a 15 magnitud range:

W0 ∝ L1/6 (2.1)
where L is the luminosity of the star. Ten years later this relation was derived by

Wilson (1967) using a sample of Hyades to be that in equation (2.2). Further work also
shows this line width to be independent of the intensity of the K reversal (Zirin, 1971),
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2. The Wilson-Bappu effect

and of metallicity (Gómez, 2012).

MV = −14.89 logW0 + C (2.2)

Such line is the widest and deepest absorption line in late type stars. Since it is very
representative of chromospheres, the modern study of the latter is based on it, as well as
on the H emission line, both which appear as double reversed emission lines.

A few more efforts to ameliorate this relation and diminish its errors found it difficult
to accomplish because of the lack of precise parallaxes back in the date (before Hippar-
cos database), methods for widths measurements and chromosphere models. However,
more than four decades later, Pace et al. (2003) made an improvement of the calibration
with high resolution spectra while digging into the possibility of use the WB effect as a
method to determine accurate stellar distances, which has always been one big problem
in astronomy, and concluded the relation (2.3) is followed.

MV = −18.0 log(W0) + 33.2 (2.3)

This was possible thanks to the accurate measurements of Hipparcos parallaxes; similar
studies by Wallerstein et al. (1999) and Gómez (2012) indicate that it is possible to cal-
ibrate such relation from parallaxes and that it is insensitive to metallicity, respectively.
Distance determinations for high luminosity stars are among the most popular applica-
tions of the WB effect: observing emission line widths leads to absolute magnitudes, which
set distance constraints.

In the present work, I intent to relate the line widths of Ca II K to the basic quan-
tity gravity. There are previous attempts to do this, as that by Reimers (1973), who
got the first empirical approach to the dependence on gravity, arguing that MV is not
a fundamental stellar parameter and that if W0 depends on luminosity (L ∝ m

g
T 4
eff ), it

should also vary with gravity and Teff . He took observations, converted the luminosity
dependence into gravity dependence and came up with relation (2.4a), which is roughly
the same as (2.4b), obtained by Park et al. (2013) forty years later, who extended the
WBR to be an excellent indicator of surface gravity for late type stars.

W0 ∝ g−0.20±0.02 (2.4a)

W0 ∝ g−0.17 (2.4b)
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2. The Wilson-Bappu effect

On the other hand, Ayres (1979) who already knew that the exponent on gravity had
to be small (∼ 0.20), was working from first principles, from theory only and he arrived
to the conclusion that the WBR must be a consequence of hydrostatic equilibrium rather
than chromospheric dynamics, i.e., ”The thickening of stellar chromospheres with decreas-
ing surface gravity implies a broadening of the base of the emission core in effectively thick
lines such as K...”. In other words, he established that the WB effect is a consequence of
surface gravity of the star.

In general, this is a topic that has fascinated everybody in the field of chromospheres
of cool stars over the last (almost) 60 years, including the experts such as Wilson (1967)
himself, Ayres (1979), Linsky and Haisch (1979), and Reimers (1973), and obviously the
reason is that this expresses fundamental physics of chromospheres. Nonetheless, these
methods are purely observational and a theoretical approach with chromosphere modeling
has not yet been made.

2.2. Physics of the WBR
The K and H lines of the doublet Ca II are located at 3,933 Å and 3,968.5 Å, respectively,
and they are produced at the very bottom of the chromosphere, where temperatures
oscillate around 4,000 K (Vernazza et al., 1973). They are then, a special feature of chro-
mospheres and serve as a probe to study their physical properties.

These lines are very opaque with line center optical depths of the order of 107 in the
photosphere and 104 at the temperature minimum (Linsky and Avrett, 1970). For giant
stars it is easier to measure them in late life stages: as a MSS passes to the giant stages
its radius increases, and if we follow L ∝ R2, its luminosity will increase as well making
the Ca II K emission line feature get stronger. Thus, the WB effect is more feasible to
be measured in late type stars, which in addition, have more magnetic activity in the
chromosphere. Activity, metallicity, effective temperature, and column mass density are
the most explored parameters in relation with the Wilson-Bappu effect.

The effects of metallicity ([Fe/H]) on the WB effect have been studied by several au-
thors too, beginning with Wilson and Bappu (1957), who did not find any dependence on
[Fe/H]. Later on, Dupree and Smith (1995) noted a diminished line width for stars with
[Fe/H] ≤ 2.0, and Pace et al. (2003) showed the WBR was valid when this value is not
lower than ∼ −0.4. But the parallaxes used by the first lacked of accuracy due to distance
and the findings of the laters was too subtle. With Hipparcos parallaxes and data from
two globular clusters, Gómez (2012) demonstrated that the WB effect is insensitive to
metallicity.

Another interesting parameter to mention is effective temperature. Although the term
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2. The Wilson-Bappu effect

Teff appears in some of the derived generalized equations of the WBR (Reimers, 1973;
Neckel, 1974; Ayres, 1979), the found dependence on effective temperature of W0 is rather
small: W0 ∝ T aeff with 1.3 ≤ a ≤ 1.7. An explanation of such a small dependence is that
since W0 is related with luminosity (as observational evidence indicates), there will be a
dependence on Teff because L ∝ m

g
T 4
eff . Hence, when using the last expression to relate

W0 with g, the temperature dependence will take place automatically. But if we take a
different approach and relate W0 with visual magnitudes, as Reimers (1973) did and as
most authors do, we will be making use of bolometric correction (BC) which depends on
effective temperature as BC ∼ −5.4 log(Teff ):

logW0 = AMV +B

= A (Mb −BC(T )) +B

= −2.5A log(L)− ABC(T ) +B

= −2.5A log
(
R2T 4

eff

)
− ABC(T ) +B

= −2.5A log
(
R2T 4

eff

)
+ 5.4A log(Teff ) +B

= −5A log(R)− 10A log(Teff ) +5.4A log(Teff) +B

(2.5)

This means that when we convert the WBR in terms of MV , as described above, we
need a large BC for cool stars that gets even larger for cooler giants.

In other words, Teff takes place in the original relation of line widths (W0 ∝ Lα) but it
disappears when using the form MV ∝ log(W0)β as the bolometric correction compensates
(bold term in equation (2.5)) the effect of temperature for cool stars.

Column mass density in the chromosphere is also related to the width of such line
because it is so optically thick that the increase of its width corresponds to an increase in
column density in the chromosphere. Ayres et al. (1975) analyzed seven high resolution
stellar spectra and reached to the conclusion that K width–luminosity relation can be
attributed to the variation of column mass density with gravity. Their measurements led
to

MV ∼ −(12± 2) logW0 + C (2.6)

And applying the bolometric correction to MV described above they were also able to
find

W ∗
0 ∝ g−0.27±0.04T 1.4±0.2

eff (2.7)
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where W ∗
0 is half of the distance between the minimums of the K doublet. Although in

equation (2.7) W ∗
0 has a dependence on Teff , it can be ignore among F to K stars because

the difference between them in Teff (around 50%) is small compared with the difference
in surface gravity (∆ log ∼6.0).

Furthermore, Ayres et al. (1975) suggested how the chromospheric physics may work
by arguing that the WBE can be attributed to the variation of column mass density (cm)
with gravity (g). First of all, they used hydrostatic equilibrium to relate column mass
density with gravity as:

Pe ∝ g · cm (2.8)

where Pe is the electron pressure. But since κ ∝ Pe, with κ being the opacity, then we
can write

κ ∝ g · cm (2.9)

which by integration over cm leads to τ ∗ ∝ cm∗2g. The quantities marked with *
indicate the parameters have been evaluated at the temperature minimum. Then they
use the argument that all chromospheres have the same continuum optical depth at this
temperature minimum, meaning τ ∗ is independent of gravity. This final and strongest
assumption conducts to the following relation:

cm∗ ∝ g−1/2 (2.10)

In addition, if we use the fact that density n goes as n ∝ g1/2, then the scale height can
be written as h0 = cm/n which is proportional to g−1, just as in equation (1.10).

In order to relate W0 with gravity, they use the line profile for damping wings, i.e.
Lorentz’s profile, ignoring van der Waals broadening and just taking into account pressure
broadening to get the relation in equation (2.11). This is possible because the K minimum
feature is formed in the damping dominated part of the line profile, and it is known to
appear in the region of the temperature minimum where τ ∼ 2/3.

τ ∗ ∝ cm∗/W 2
0 (2.11)

Taking this value for τ and the result in equation (2.10), we can finally relate W0 with
gravity as:

W0 ∝ g−0.25 (2.12)

On the same grounds, Avrett (1972) compared a solar model with a second one of
effective temperature similar to that of the Sun and log(g) = 2.0. Based on the thickness
of their chromospheres and optical depths at the region where the K line is formed, he
was able to conclude that the atmosphere with lower gravity is less dense but since it is
geometrically extended to a greater degree, the outer layers have greater optical depth.

30



2. The Wilson-Bappu effect

This directly leads to a greater line emission width and the geometry produces greater
luminosity. But luminosity is related to gravity as L ∝ g−1, hence, the width W0 in-
creases with decreasing gravity. His model also resulted in quantitative agreement with
the width-luminosity relationship in equation (2.1) first observed by Wilson and Bappu
(1957).

The Mg II k line at 2796 Å holds similar excitation conditions than those of the K
line, meaning that the relation between their line widths and other stellar parameters
is qualitatively equivalent to those of the K line. Hence, the WB effect is also valid for
the k line but since it is located in the ultra-violet regimen of the spectrum it cannot
be observed with ground based telescopes, making observations in these line rare and
harder to study than the K line. However, Kondo et al. (1972) used a balloon telescope to
perform spectroscopy of the Mg k line and showed their line widths are in average ∼ 0.4
times wider than those of the Ca II K line and that the WBR is also followed.

As determined by Kraft et al. (1964) while studying the possibility of the use of the Hα

line as luminosity indicator, a weaker but analogous correlation can also be seen in this
line among G and K type stars.
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3
The PHOENIX code

PHOENIX (Hauschildt and Baron, 1999) is a state-of-the-art stellar and planetary atmo-
sphere code that was designed as an extremely general code and which has been steadily
improved over two decades. It can calculate atmospheres and spectra of stars all across
the HRD like main sequence stars, giants, white dwarfs, stars with winds, TTauri stars,
novae, supernovae, brown dwarfs, AGN disks and extra solar giant planets (including
irradiation).

An example of a solar spectrum computed with PHOENIX is shown in figure 3.1. It
has Teff = 5, 780 K and solar metallicity.

SNIRIS was an early version of this code, which has been renamed and developed within
the theory group of the Hamburg Observatory. Since it suffered a lot of major changes, it
is said to have risen from the ashes instead of being a new version. And so, that is where
its name comes from. A general description of the latest version of the code can be found
in Baron et al. (2003).

Although some of its parts are written in C and C++ thus there is access to advance
and precise arithmetic libraries like QDA, PHOENIX is a parallelized Fortran 95 code. If
the implementation of parallel computing is wished, it is necessary to use MPI. Initially,
MPI ran on distributed memory architectures, but with the change of architectures in
computers, now can also run on shared memory architectures, where several processor
have access to a global memory, see figure 3.2. This allows data to move from the space
of one process to that of another, undertaking the parallel programing model.

Currently, PHOENIX is supported by several systems including LINUX and Mac OS; it
is not and it will not be supported by any Microsoft Windows platform. Documentation,
features and brief manual of the code are available online to download.

In this chapter I will describe the methods implemented to solve the RTE, which is the
basis of PHOENIX, the most important parameters as far as this work concerns, and the
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general structure of the code.
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Figure 3.1.: Solar synthetic spectrum.

Figure 3.2.: Scheme of a shared memory architecture. Taken from computing.llnl.gov
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3.1. Equations and numerical method
Radiation makes the physical properties of an atmosphere, in fact of the entire star, be
measurable because the spectrum we see typifies them. But this radiation might change
if it passes through matter since more energy can be added or subtracted, phenomenons
known as emission and absorption, respectively (see A.1). This means radiation varies
with depth in the atmosphere, which makes it essential to model stellar atmospheres.
Furthermore, the spectrum of a star can be calculated from such model.

Hence, to model an atmosphere a solution of the radiative transfer problem must
be found, i.e., a known source function. PHOENIX does this by applying the short-
characteristic method (Olson and Kunasz, 1987) in which a two-level atom with complete
redistribution is considered and where the frequency independent line source function is
written as

S = (1− ε)J̄ + εB (3.1)

where ε is the destruction probability, J̄ is the mean intensity of a line and B is the
Planck function. A full derivation of (3.1) is given in A.2. J̄ can also be expressed as ΛS,
where Λ is the lambda operator that can be represented as a matrix operator acting on
J̄ .

An iteration method is now used to iterate lambda so we can approximate a source
function Sn+1 from the radiation field produced by Sn:

Sn+1 = (1− ε)ΛSn + εB (3.2)

The idea of this method is a repeated application of equation (3.2) to eventually reach
convergence to the correct solution, but it does not work for small values of ε(ε � 1).
ε = 0 has as solution a grey atmosphere1 but it also implies that J(τ = 0)� B because
if τ � 1/ε (being 1/ε the thermalization depth) a photon has a chance to escape through
the surface, causing J < B.

To ensure thermalization, photons have to be scattered 1/ε times, traveling a large
optical distance without being destructed. This means they will couple different regions
of the atmosphere.

Due to the problem described above, to solve the radiative transfer equation for all
wavelength points, the OSI method is used, which is the most commonly used. This
method uses spherical symmetry for 1D given by layers or shells and parallel geometry
when selected; spherical geometry is useful for extended photospheres, like in giant stars.

1Approximation in which the absorption coefficient does not depend on frequency.
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To quantify the number of ionized atoms, the Saha equation is included in PHOENIX
for more than 3,900 NLTE electronic energy levels and 47,000 atomic transitions (primary
lines).

The elements included, along with their respective more important ionization stages, in
the EOS used in PHOENIX are H, He, Li, Be B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl,
Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Kr, Rb, Sr, Y, Zr, Nb, Ba, and La
(Allard and Hauschildt, 1995). Dust grains and molecules can be incorporated, but they
are only used in this work to model the photospheric emissions and not the chromospheric
part due to their high temperatures. Around 300 molecules are included in every model.

More information about the Saha equation and the EOS can be found in A.3.

In addition, the iterative method allows temperature corrections to achieve energy
conservation in the equations, as well as radiative and hydrostatic equilibrium.

3.2. Parameters
The most important input parameters for us are those who define the structure of the
star and, therefore, the shape of its spectrum. PHOENIX needs at least three of them,
which are effective temperature (Teff ), a value of surface gravity (log(g)) and mass or
luminosity. As an alternative, the radius can also be used. If more than three parameters
are given in the scheduler script (see §3.3), all of them have to go in accordance; otherwise,
only those most important will be taken into account for the model, but Teff is always a
must.

These and other relevant control parameters are describe below.

• cmtdis Array containing the step size between points in Å. The points are divided
in 6 section from 10 to 107 Å, each of one can have its own cmtdis.

• inlte Integer variable. Set to 0 for LTE calculations or to 1 for NLTE calculations.
When inlte= 1, the wanted species must be additionally selected.

• logg Logarithm of the surface gravity value in cgs units.

• mass Mass in solar masses.

• n Exponent of the power law density profile given by ρ(r) = ρ0(r \ R0)n; n is an
integer. Other density profiles like exponential or arbitrary are also available.

• teff Effective temperature of the star in Kelvins.

• z Scaling factor for metal abundances describe by log10(z) = [(Fe/H)/(Fe/H)�].
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As stated before, Teff is one of the most important parameters while modeling a pho-
tosphere owing to the fact that it will determine the intensity of emitted radiation, and
hence the shape of the spectrum including its maximum emission peak. The latter is
established by the Wien’s law:

λpeakTeff = 2.89810−3m ·K (3.3)

where λpeak is the wavelength at which the spectrum has its maximum emission in me-
ters. As a consequence, shapes of synthetic spectrum will be regulated by the so-called
parameter (see figure 1.2) and must not be overlooked. Furthermore, the appropriate
selection of spectral types is also dependent of it.

On the other hand, surface gravity is in charge of the internal structure of stars. In
PHOENIX, there is a model for dwarf’s atmospheres where plane parallel geometry is
assumed and gravity is the same for all radial points. But since giant stars have an ex-
tended atmosphere, this is not be suitable for them and so an alternative is a second
model for stellar atmospheres specially used for this type of stars, which uses spherical
radiative transfer and where gravity does not remain constant but changes with radius
instead. Therefore, the choice of the right model mostly lies in the value of surface gravity.

For stars with reasonably high surface gravities (log(g) > 3.0), the atmospheres have a
relative extension of less than 1% and they can be handled with plane parallel approxima-
tion (Allard and Hauschildt, 1995). Nonetheless, in this work I have limited all models to
spherical symmetry, which is translated as an atmosphere constituted by layers or shells.
Each of such layers is required to follow the equations mentioned in §3.1 and continuity
between them is also a must. The effect of gravity is also visible in spectra since a line
will be more pressure broadened if surface gravity is larger.

Of course, an entire stellar interior is only completely elucidated when all of the quan-
tities involved are taken into account. These quantities are density, gravity, temperature,
gas pressure, mass, and luminosity. They constitute the equations of stellar structure
which are not be explained here because they are not of fundamental matter to this work.

3.3. Program files
PHOENIX is a considerably large program so it is structured in modules or units that
contain different independent subroutines. They can be computed at the same time and
when the computations are done, all the information is put together. This characteristic
makes possible a parallel computing.

These procedures are written in the main code named phoenix.f, which is the “driver”
program and consists of almost 25,000 lines describing the entire code.
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Besides the main program, there are other program files including the input parameters
(see §3.2), ionization potentials, routines with methods to obtain line opacities, for RT
and NLTE calculations as well as for atoms and molecules.

In fact, molecular line data is one of the most significative differences and improvements
of the code. This was possible with the addition of HITRAN92 database, which back in
the time included line parameters for 31 species and 709,000 transitions (Rothman et al.,
1992).

The atomic line list, taken from Kurucz and Bell (1995), also plays an important role
in this code since it is crucial for the correct interpretation of emission lines. It contains
information of 80 million lines that are been used to compute the absorption and emission
from spectral lines of ∼ 60 species. They are being distributed by R. Kurucz on DVD
format to modelers and the newer version is available online.

As its name says it, the scheduler script in PHOENIX is in charge of arranging the jobs
within the main program. The principal tasks are (1) reading and writing of the input
and output files (or units), respectively, and (2) describe the parameters that define the
model. All stellar2 parameters, temperature corrections details and the set of atomic LTE
and NLTE species to be included, are listed here.

Input files are always units containing the structure (optical depth, electronic temper-
ature, column mass density, gas and electronic pressure, radius, etc.) of a previously well
converged photosphere with similar parameters of that to be computed. If surface gravity,
effective temperature, or mass are too different, the computation of the model will need a
larger number of iterations before it reaches convergence. These differences are considered
to be large when ∆ log(g) > 1.0, and ∆Teff > 1, 000 K; if they are small, an amount of
10 to 30 iterations is enough to reach convergence.

Output units are of the same structure of the latter but they contain the structure of
the new model. In addition, a second very important output unit gives the surface flux
as a function of wavelength.

Every iteration consists in the reading of the input structure and finalizes with a tem-
perature correction. This is how a final synthetic spectrum is gotten, but in between a lot
of steps must be done. First of all, the hydrostatic equation is integrated (here, radiation
pressure is ignored for simplicity at the very first iteration because it is unknown), making
sure that the equation of state remains valid in each layer of the atmosphere. Then the
radiative flux (Frad) is computed also for each layer and the radiative transfer equation is
solved for every wavelength point.

At this point, if NLTE is going to be considered, the rate equations (including the
2This is, of course, for the stellar atmosphere case. Otherwise, the parameters have to be those of a

rapidly expanding atmosphere or a planetary one.
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Boltzmann and Saha equations, see appendix A.3) have to be solved. The OSI method
is used to solve them.

Ftot = Frad + Fconv = σT 4
eff (3.4)

After this, we might find that Frad is not equal to σT 4
eff even when the convective flux

(Fconv) is ignored (see equation (3.4)). If this is the case, the temperature for each layer
has to be corrected trying to get a better convergence, so a new iteration begins with the
modified temperature values, which are determined by energy conservation. Essentially,
this is repeated until the model has converged or until a specific number of iterations has
been reached.

3.4. Photospheric models
Well-tested, accurate photospheric PHOENIX models already exist for cool giants, but
these artificially end in the temperature minimum. Hence, all weak and medium pho-
tospheric lines are matched excellently. These models encompass the coolest known M
dwarf, M subdwarfs and brown dwarf candidates having a wide range of parameters:
5, 000 K≤ Teff ≤4,000 K, 3.5 ≤ log(g) ≤ 5.5 and −4.0 ≤ [M/H] ≤ +0.5 (Hauschildt
et al., 1996).

But emission from the chromospheres, as observed in the very strongest lines such as
Ca II K, caused by the outwardly increasing temperature in the chromospheric layers,
has so far been left unconsidered. Due to the fundamental nature of this problem, no
quantitative chromospheric models exist so far, neither has the Wilson-Bappu effect (§2)
been reproduced to fully match the observational evidence.
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The current chapter is dedicated to describe the methodology of this work, and is not
planned to be a PHOENIX user’s manual, but it will remark crucial details to take into
account while modeling chromospheres. The technical findings of such practice will also
be related not as formal results whereas as warnings and guidance for future users in view
of the fact that no chromospheric models for low gravity stars exist so far.

This chromospheric mode included in PHOENIX (Fuhrmeister et al., 2005) has been
successfully applied in modeling of M dwarf chromospheres (Hauschildt et al., 1996).

4.1. How to compute a PHOENIX chromosphere
To compute a chromosphere with the code package PHOENIX, an executable scheduler
script of PHOENIX and an executable of make chromos, which will contain the informa-
tion about the structure of the chromosphere are needed. make chromos.f is a program
file that includes an input file named chromos.dat which needs, in turn, a file containing
the structure of a photosphere as input, and has a different file as output. The latter
will hold not only photospheric data but also those of a chromosphere attached to this
particular photosphere.

The input file for chromos.dat must be a model produced by a converged and well
behaved photospheric simulation; information of how to get this is given in §3.4. It is
recomendable to make this simulation with the same desired parameters for the chromo-
sphere like effective temperature, mass, chemical composition, etc. Taking this precaution
will avoid a mismatching of both photospheric and chromospheric spectra, otherwise it
would be impossible to compare their continuum. A description of the parameters that
can cause a significative change in the spectrum with an attached chromosphere will be
held in this chapter.

In order to obtain an output file from chromos.dat, and hence the structure of the
chromosphere, first it is necessary to compile the program file make chromos.f — this is
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done within the PHOENIX’s BIN folder, where the binary or executable files are located.
The output file will carry information that describes the structure of the chromosphere, the
aforesaid information is included as variables like the initial temperature value (minimum
temperature), the maximum temperature value located at the top of the chromosphere,
its turbulent velocity (Vtur), column mass density, etc.; they are broken down below in
table 4.1.

Parameter Used values Units

Temperature at top of the chromosphere 8× 103 - 104 K
Temperature at top of the atmosphere 20,000 K
Turbulent velocity in the photosphere 2.0 km/s

Turbulent velocity at top of the chromosphere 10.0 km/s
Column mass at temperature minimum (log scale) -2.5 gr/cm2

Column mass at top of the chromosphere (log scale) -6.5 – -7.0 gr/cm2

Outer pressure in transition region 10−4 dyn/cm−2

Table 4.1.: Parameters for the structure of the chromosphere in solar type star models.

The temperature at the top of the chromosphere was set to 8,000 K by Ayres (1979),
although a few years early Vernazza et al. (1973) used 8,500 K in their model, saying this
value is still lower than the corresponding temperatures, and they used 20,000 K for the
top of the chromosphere. Turbulent velocities in the photospheric region of 1 − 2 km/s
have been previously used with satisfactory results (Maltby et al., 1986; Houdebine et al.,
1995). The turbulent velocity along the chromosphere in PHOENIX is given by a linear
function starting at the Vtur in the photosphere and ending with the chosen value for
turbulent velocity at the top of the chromosphere (V top

tur ). This value has been proposed
to be 8.5 km/s when Teff = 8, 000 K in a VAL model made by Maltby et al. (1986).
After the chromosphere region, a second linear temperature rise is applied to form the
TR, which is considered to be the top of the atmosphere.

As with turbulent velocities, the temperature along the chromosphere is given by a
linear rise but it is a function of column mass that goes like T = 7.5 log(cm), where
cm is defined as in (1.14) and z denotes increasing distance in the inwards direction. In
the upper layers of the photosphere, column mass was set to log(cm) = −2.5, while in
the outer zones of the chromosphere it was chosen to go in agreement with hydrostatic
formulation such that

log (pout) = log (g) + log (cmtop) (4.1)
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For a fixed arbitrary value of log(pout) = −4. Hence, for surface gravities ranging
between 2.5 and 5.0, cmtop varies from -9 to -6.5 in a logarithm scale. Nonetheless,
in most of the cases this was restricted to -7 in order to keep a reasonably extension
of the chromospheres and their densities high enough to produce emission lines. It is
important to note that varying the computed values of equation (4.1) too much can lead
to inconsistencies in the hydrostatic equations of the code and models may not carry on.

After having chosen all these data, they have to be used as an input file for the sched-
uler script containing the option ichrom2=t. Such option activates the chromospheric
mode incorporated in PHOENIX. There is also an alternative function ichrom=t for the
chromospheric mode but it will no be describe here. In addition, the parameter chvtb fac
is highly recommended to avoid the chromosphere’s turbulent velocity (Vtur) surpass the
sound velocity (VS): when computing a chromosphere, an increase of turbulent velocity
will be impose and it might be higher than the sound velocity. Using chvtb fac will set
the value of Vtur to a fraction of VS all along the chromosphere.

Once all of the above has been done, our final output will include both photospheric and
chromospheric emissions. Note that if non-LTE is activated, only the specified species
will appear in the spectrum and those which are of much interest must be previously
selected.

A step by step instructive for the computation of a chromosphere is given below:

1. Get an output file from a scheduler script that does not include the function
ichrom2=t. It will contain only a structure of the photosphere.

2. Use such file as input for chromos.dat, which must contain the desired chromospheric
parameters.

3. Compile make chromos.f within the compiler folder contained in BIN.

4. Copy make chromos to the location of the needed files and run it. The output file
of chromos.dat, containing the chromosphere’s structure, should now appear in the
same location.

5. Specify this new file as the input file for the scheduler script that includes the
function ichrom2=t and run it.

6. The final result is a spectrum of the photosphere with a chromosphere incorporated
in a semi-empirical way.

Please note and bear in mind that chromospheric parameters for low gravity stars are
not obvious and they do not have been previously defined by any other work. Vernazza
et al. (1973) proposed values for temperatures at the bottom and at the top of the chro-
mosphere, as well as the respective column mass values for a solar model. Although they
achieved a well accepted model, such parameters were only chosen with the goal of being
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able to match observations (when available), reproduce a well behaved TR and produce
prominent Lyα lines and, therefore, some arbitrarily data points lack physical meaning.

4.2. Making models
Calculating a good chromospheric model depends on the adjustment of several parame-
ters, besides of having a previously well converged photospheric model to work with. Such
parameters define the whole structure of the chromosphere. Those that are of interest for
us are the temperature at top of the chromosphere (Ttop) in K, the column mass density
(cm) in gr/cm3 and Vtur in km/s at the bottom and at the top of the chromosphere.

Initiating with a converged solar model, eleven models of chromospheric emission were
calculated; they are listed in table 4.2. All of them have the same values of Vtur=10 at
top and Vtur=2 at bottom, but different Ttop and cm at the bottom of the chromosphere.
These models deem as a first test to check whether the mentioned parameters affect the
core of the CaII K line noticeably.

All computations have been made with the NLTE mode for the species H I, He I, He
II, Ca I and Ca II, with Teff =5,780 K and M = 1M�. Gravity values are log(g) = 4.4
for models described within this section but they vary in §4.4.

No. Ttop log(cm)
0 8,000 -2.5
1 6,500 -2.5
2 5,000 -2.5
3 9,500 -2.5
4 11,000 -2.5
5 8,000 -4.0
6 8,000 -4.5
7 8,000 -1.0
8 8,000 +0.5
9 8,000 -2.0
10 8,000 -3.0

Table 4.2.: Parameters for the first chromospheric models.

The first models shown that the best temperature Ttop must be around 10,000 K, where
hydrogen absorption is maximized, and that log(cm) = −2.5 builds a better shape of the
Ca II K line core, i.e., emission is measurable and wings are not so prominent. In figure
4.1(a), the differences produced by temperature changes with same log(cm) are shown,
and those produced by column mass density with same Ttop are in figure 4.1(b).
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The changes of the maximum temperature at the top of the chromosphere indicate that
increasing this parameter will produce more emission of the Ca II K line. Similarly but
with a stronger effect due to the logarithmic scale, a higher value of column mass at the
bottom of the chromosphere where the K line is formed, is reflected in stronger emission
of this line.

Now what remains to be explored is if the chosen turbulent velocities can actually make
a difference in the outcomes of the models. With such objective, three more spectra of
different Vtur were obtained. Their parameters are shown in table 4.3.

Jevremovic et al. (2000), while modeling atmospheres of dwarf stars, found a decrease
in electron density with turbulent velocity. Since the Ca II K line formation process occurs
in the region of temperature reversal, whose structure is determined by the parameters
at the bottom of the chromosphere, the values of Vtur at the bottom of the chromosphere
(V bottom

tur ) were not changed to avoid excessive contribution to such line.

No. Ttop log(cm) Vtur at bottom Vtur at top

11 10,000 -2.5 2 8
12 10,000 -2.5 2 7
13 10,000 -2.5 2 6

Table 4.3.: Parameters for models with different turbulent velocities.

Models 11 to 13 did not present any visible change in their spectra. This can be
attributed to the lack of importance of the higher layers of the chromosphere when it
is about calcium emission, i.e., the Ca II emission is produced within the bottom of
the chromosphere. Therefore, changing the upper turbulent velocity does not affect the
bottom enough to be perceived in such line.

4.3. Smoothing temperature profiles
In figure 4.2 the temperature profile corresponding to model #11 is plotted. There, one
can clearly see the beginning of the chromosphere at the temperature minimum. From left
to right, the abscissa indicates the beginning of the photosphere, where the temperature
starts to drop until it reaches a minimum value. After this point and up to the selected
maximum Ttop, the values correspond to the chromosphere’s profile. But this function
looses continuity at that precise point, which means both curves (from the photosphere
and from the chromosphere) are joined but not in a smooth way.
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(a) Effects of the temperature.

(b) Effect of the column mass.

Figure 4.1.: Effects of temperature at the top and cm at the bottom of the chromosphere for
solar models.
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Figure 4.2.: Temperature profile of a solar model.

Physically, this is not what we are expecting, since the photospheric region must be in
equilibrium with the chromosphere. This situation can lead to undesirable features in the
core of the Ca II K line, such as a very deep core or no signs of emission. To avoid this
problem, one must manually change some temperature values of the region surrounding
the minimum point and make a smooth curve. Manual changes in temperature can also
be helpful when Tmin is not high enough to produce the desired output. Three spectrum
have been made to fix this issue. The complete profiles are included in appendix B.1 and
the description of the corrections are as follows:

1. Flat Valley There were nine points in the profile with temperature lower than 4,000
K. Their values were arbitrarily increased and set to 4,000 K. With this correction
the intensity of the Ca II K line gets smaller, narrower, and the core does not seem
to be affected, but still the temperature profile has non-smooth zones.

2. Symmetric Correction The same nine points were modified but in a symmetrical
manner. The fifth point was set to 3,860 K, those at the edges at 4,000 K, and the
remaining were set 35 K apart each. Although a symmetric distribution ameliorates
the problem, it is not the best way to do it because going from the minimum point
to the photosphere and to the chromosphere does not follow the same function.
Imposing this causes the temperature profile to look unnatural.

3. Smooth Curve A more accurate profile was found when symmetry is not consid-
erate and a smooth curve is searched instead. The chosen values of temperature are
listed below from left to right.
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4.000 3.965 3.930
3.930 3.945 3.962
3.980 4.000 4.015

This selection of values makes the line emission core to be less deep in the very
center and also produces a narrower line, which we are looking for. In addition, the
emission in the wings increases leading to a better define width of line.

All of these corrections along with the original curve are shown in figures 4.3 and 4.4; they
display temperature profiles and Ca II K lines, respectively. The photospheric parame-
ters of these models correspond to the inactive Sun, i.e., a Sun with no magnetic activity.
Similarly, since the structure of their chromosphere has been chosen to match their pho-
tosphere, they represent a Solar one. This entail complete non-active Solar models, which
are to be compared with observational data in further work.
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(a) Flat Valley.
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(b) Symmetric Correction.
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(c) Smooth Curve.

Figure 4.3.: Temperature corrections in the chromosphere for solar models.
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Figure 4.4.: Ca II K for solar models with temperature corrections.

4.4. Changing surface gravity
To compute the chromosphere models for different values of gravity, the same method
established in §4.1 has to be applied. But first of all, converged photosphere models are
needed. Since we are aiming for them to have different values of gravities, the whole
structure of each synthetic star will be different. This is true because hydrodynamic equi-
librium is a must for stellar structures, making surface gravity one of the most important
parameters for modeling stars.

Hence, if we compare two stars of equal Teff but different surface gravities, their struc-
ture will differ more than in the opposite case (same surface gravity but different Teff ).
This entail a problem when computing such spectra: since the PHOENIX code requires
a previously converged model to start a new model with another set of parameters, the
convergence and well behavior of the results can depend on the right choice of the param-
eters of the input file.

For this reason, a big change in gravity between models may not be suitable to compute
them one after another. To avoid significative changes in the structure of each model, I
have started with a solar model whose logarithm of surface gravity is log(g) = 4.4 and then
used it as input for the next ones making steps of only ∆ log(g) = 0.1. This procedure
was repeated until log(g) = 2.5 was reached, being all of them LTE models.
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Nonetheless, with the latest version of PHOENIX, one should be able to make new
photospheric models with changes of about ∆ log(g) = 0.5 without convergence problems
due to improvements in the equation of state.

Five out of these models were selected to be used as input for NLTE models keeping all
other parameters the same. The chosen ones were those with log(g) = 4.4, 4.0, 3.5, 3.0, and
2.5. A sixth one for log(g) = 5.0 was gotten to extend the data for gravities above the solar
value. Then the NLTE models for different gravities served as bases for chromospheric
models. Maximum temperature in the chromospheric region was the only parameter
(besides gravity) that has been changed in each model, they were set to 10,000 K for
log(g) = 5.0 and 4.4, 9,000 K for log(g) = 4.0 and 3.5 and 8,500 K for log(g) = 3.0 and
2.5.

The reason for such thing is high temperatures at the outer layers of low gravity stars
do not work because radiation pressure overtakes gravity. Output spectra are shown in
figure 4.5, where the differences in flux around the Ca II K line due to the changes in
gravity can be seeing.

Figure 4.5.: Ca II K line for different gravities.

To get measurable K lines in these models, some changes in their temperature profiles
were made. Different values of column mass density were also applied. Such parameters
vary from 3, 800 K ≤ Tmin ≤ 4, 200 K, 8, 500 K ≤ Ttop ≤ 10, 000 K, and −5.7 ≤
log(cm)bottom ≤ −7.0. Physical parameters of the best results among them are listed in
table 4.4 and the corresponding emission lines are shown in figure 4.6.
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This models only include surface gravities from log(g) = 5.0 to log(g) = 3.5, for the
two remaining models, measurable emission could not be obtain by the method described
in this chapter and the alternatives will be discussed in §5.

log(g) Ttop (K) log(cmtop) (gr·/cm2) pout (dyn/cm2) R (cm)

5.0 10,000 -7.0 10−4 3.65× 1010

4.4 10,000 -7.0 10−4 7.31× 1010

4.0 9,000 -6.6 10−4 1.16× 1011

3.5 9,000 -7.0 10−4 2.08× 1011

Table 4.4.: Physical parameters for the best chromosphere models, presenting emission of K
line, for different values of surface gravity.

Figure 4.6.: Spectra of the best chromosphere models, presenting emission of K line, for dif-
ferent values of surface gravity. The specified values on the right top corner correspond to the
respective values of log(g).
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5.1. Structure of the models
Figures 5.1, 5.2, and 5.3 display the structures of the models for chromospheres with
Teff = 5, 800 K and different surface gravity. The first one shows the logarithm of column
mass density in g · cm−2, the second is for the gas pressure (Pgas) in dyn · cm−2, and the
third one illustrates the electron pressure (Pe) in same units. All of them are plotted
against the electron temperature (Te) given in Kelvins.

The changes in extension of column mass between the different chromosphere mod-
els (figure 5.1) are not significative because (1) they were chosen to be consistent with
each others, and because (2) densities are so low in the chromospheres (log(cm) ∼ 10−4)
that the small changes are not significant in comparison with those within the respective
photospheres. Nonetheless, cm photospheric values present variations consistent with the
surface gravity of the models; these values go from a maximum of 9.08 g · cm−2 for the
model with log(g) = 5.0 to 17.28 g · cm−2 for log(g) = 3.5.

The synthetic spectral energy distributions (SED’s) of the models are illustrated in
figure 5.4. The wavelengths have units of Å and the values of flux correspond to a loga-
rithmic scale, the flux units are erg/cm2/s/cm. As seen in this figure, the usage of LTE
atomic lines in the model together with NLTE hydrogen lines causes the hydrogen contin-
uum in the blue, at around 900 Å, to have strong emission lines. Such lines can pump the
hydrogen unrealistically towards redder zones of the spectra, spoiling some other NLTE
lines like H and K through electron pressure.

A possible solution to this problem is to eliminate all LTE lines off the models, keeping
only the selected NLTE species. This will produce rather flat spectrum with only a few
lines on them. When this procedure was followed, no difference in the shape or intensity
of the K emission lines was observed. Therefore, the original models (with LTE and NLTE
atomic lines) were kept.
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In figure 5.5, the temperature profiles of the four models are shown. Temperatures are
given in Kelvins and radii in cm, except for the solar model, where the temperature is a
function of height. Here, height is given in kilometers measured above a zero point were
τ5000 = 1, this to be consistent with the model of Vernazza et al. (1973) in figure 1.3.

Their model has a temperature minimum of 4,100 K located at 520 km, while in this
work I use a minimum of 3,930 K at 830 km. Between 1,000 and 2, 000 km, they have
adopted arbitrary values of the temperature, making it rise up to 6,000 K; in contrast,
this region in the model of figure 5.5(b) corresponds to the central region of the modeled
chromosphere with PHOENIX. After 2, 200 km and 8,500 K, they put a second sharp
increase of temperature to model the transition region, point that is very close to the end
of the chromosphere in this model at 2, 342 km and which does not include a transition
region. Although the difference in temperature for this point ending the chromosphere
with this work is of 1,500 K, Vernazza et al. (1973) claimed they used a lower temperature
than the corresponding to compensate the high-temperature plateau at 2, 400 km.

5.2. Measurement of the lines

The principal aim of the investigation was to see how the emission line widths of the
Ca II K line behave as a function of surface gravity in chromospheric models of inactive
stars. Different values of surface gravity were selected to compute the models, whose
K lines were then analyzed individually. This selection of parameters represents an ad-
vantage in the analysis because spectral type and effective temperatures can be controlled.

All the chromospheric models were computed with the same version of PHOENIX
(16.05.00D) released on May 22nd, 2013, and with the same OS. This detail may not
seem very relevant but it is important to maintain concordance between computations
due to changes and improvements of the code that manage different ways of solving the
EOS. Also, it has been noticed that models of same structures and parameters can lead
to small differences in spectra when computed by different operating systems. Hence,
taking this precaution will avoid unwanted differences in the shape of the chromospheric
emission lines proper of computational aspects.

Along the same line (Ca II K), the measurements of the K emission line widths were
finished before any relation was calculated in order to avoid subconscious bias. Results of
the measurements are listed in table 5.1. This methodology was made by two individuals
separately, obtaining the same result.
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(a) Structure for the model with log(g) = 5.0. The
maximum value of cm is 9.08 g · cm−2.

(b) Structure for the solar model. The maximum
value of cm is 14.12 g · cm−2.

(c) Structure for the model with log(g) = 4.0. The
maximum value of cm is 12.05 g · cm−2.

(d) Structure for the model with log(g) = 3.5. The
maximum value of cm is 17.28 g · cm−2.

Figure 5.1.: Structure of the best models for different gravity. cm is the logarithm of column
mass density, which is given in units of g · cm−2 and the temperature is the electron temper-
ature in Kelvins. From left to right, the points correspond to the chromospheres towards the
photospheres. All models have Teff =5,800 K.
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(a) Structure for the model with log(g) = 5.0. The
maximum value of Pgas is 8.78× 105 dyn · cm−2.
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(b) Structure for the solar model. The maximum
value of Pgas is 3.43× 105 dyn · cm−2.
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(c) Structure for the model with log(g) = 4.0. The
maximum value of Pgas is 1.17× 105 dyn · cm−2.
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(d) Structure for the model with log(g) = 3.5. The
maximum value of Pgas is 5.31× 104 dyn · cm−2.

Figure 5.2.: Structure of the best models for different gravity. Gas pressure is given in units of
dyn · cm−2 and the temperature is the electron temperature in Kelvins. From left to right, the
points correspond to the chromospheres towards the photosphere. All models have Teff =5,800
K.
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(a) Structure for the model with log(g) = 5.0. The
maximum value of Pe− is 8.78× 105 dyn · cm−2.
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(b) Structure for the solar model. The maximum
value of Pe− is 3.43× 105 dyn · cm−2.
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(c) Structure for the model with log(g) = 4.0. The
maximum value of Pe− is 1.17× 105 dyn · cm−2.
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(d) Structure for the model with log(g) = 3.5. The
maximum value of Pe− is 5.31× 104 dyn · cm−2.

Figure 5.3.: Structure of the best models for different gravity. Gas pressure is given in units of
dyn · cm−2 and the temperature is the electron temperature in Kelvins. From left to right, the
points correspond to the chromospheres towards the photosphere. All models have Teff =5,800
K.
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(a) SED for the model with log(g) = 5.0.
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(b) SED for the solar model.
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(c) SED for the model with log(g) = 4.0.
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(d) SED for the model with log(g) = 3.5.

Figure 5.4.: SED’s of the best models with different surface gravity. All models have
Teff =5,800 K, M = M� and solar chemical composition. The presence of strong emission
lines in the hydrogen continuum around 1,000 Å is due to LTE atomic lines in addition of the
NLTE hydrogen lines.
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(a) Model with log(g) = 5.0.
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(b) Temperature profile for the solar model as a
function of height.
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(c) Model with log(g) = 4.0.
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(d) Model with log(g) = 3.5.

Figure 5.5.: Temperature profiles of the best models with different surface gravity. All models
have Teff =5,800 K, M = M� and solar chemical composition. Temperature is given in Kelvins
and radii in cm except for the solar model, where the temperature is shown as a function of
height. Height is given in kilometers measured above a zero point were τ5000 = 1.
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5. Discussion and conclusions

log(g) W0

5.0 0.35
4.4 0.43
4.0 0.51
3.5 0.55

Table 5.1.: Measured line widths of the Ca II K emission line for models of different surface
gravities. The widths are given in Å.

One manner to do this was to plot of the lines in the same scale to compare them with
each other and get the logarithm of the ratio of the widths. Once this was done, the
difference in surface gravity were related in the following way:

log (Wa/Wb) = A

and
log(ga)− log(gb) = B

→ Wa,b ∝ g
A/B
a,b

(5.1)

where a and b indicate two different modes, and Wa,b is the ratio of the line widths of
such models.

The second approach was to measure the line widths directly from each model: sub-
tracting the minimums where the wings of the line begins to the maximum points and
dividing by two gives us the values of flux whose wavelengths difference is the equiva-
lent width. This was achieved with a small simple routine written in python but some
ambiguities in the obtained values were observed. The main problem of this is that the
region where a wing starts is not a well define point, but rather a group a points with
very similar fluxes, making hard to select a single value to be the real minimum point.

5.3. Solar model
Testing models always requires the comparison with observational data. If both match,
then one can trust the model even more. In this work, the K line for the solar model is
to be compared with observations of a moderately active Sun in in 2014 (S=0.17) made
with the TIGRE (Telescopio Internacional de Guanajuato Robótico-Espectrocópico, for-
merly Hamburg Robotic Telescope) and its HEROS (Heidelberg Extended Range Optical
Spectrograph.) spectrograph (R=20,000 resolution).
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5. Discussion and conclusions

But since all spectral lines, including photospheric absorption lines and chromospheric
emission lines, are subjected to an extra broadening (besides pressure broadening) caused
by the instruments, any model has to be convoluted with the Gaussian instrumental
profile (IP) of the spectrograph that was used to get the observational data. Doppler
broadening also affects the line widths, but the solar velocities of around ∼ 2 km/s are
not significative enough to be taken into account here.

The Gaussian function is describe as

G(x) = 1
σ
√

2π
× e−(x−µ)2/(2σ2) (5.2)

where σ is the standard deviation and µ is the mean. The TIGRE’s spectrograph pro-
duces a broadening of about 0.2 Å, which is represented as G(λ) = e−(λ−b)2/c2

a, where
b = 3934.78 Å is the center of the K line core, c = 0.15 Å is half the total width of the
function, and a = 1/c

√
(2π) is its total height.

Figure 5.6 illustrates the original solar model in the K line region (5.6(a)), the observa-
tional data (5.6(b)) of the solar Ca II K line core at its basal flux level in 2009 (S=0.15,
Schröder et al. (2012)) and at an only moderately active level in 2014 (S=0.17) taken
with the TIGRE, and the final convoluted synthetic spectra of this line with a Gaussian
function for the TIGRE’s HEROS spectrograph (5.6(c)) along with the 2014 data.

In the latter, it can be seen that the solar model includes as much emission as the basal
flux shown by the Sun. Although the model still presents a stronger absorption core, this
could only mean that the top of the chromosphere has a little too much column mass. But
the temperature minimum is not affected by it because, as established before, the emis-
sion is produced at the bottom of the chromosphere and the absorption line outside the
emission is caused by photospheric effects. Hence, the deepness of the core is not relevant.

5.4. Conclusions
Using the PHOENIX code, I have computed models with solar effective temperature and
different surface gravity in order to see, if these would reproduce the Wilson-Bappu effect.
This version of PHOENIX includes a chromospheric mode in hydrostatic equilibrium, with
the same essential physics as summarized above, and which therefore simply scales with
surface gravity (cm ∝ g−1/2, n ∝ g1/2). However, a practical problem occurs since shallow
basal flux emission is too smeared out at already log(g) = 3.5 (see figure 4.6). Conse-
quently, I needed to make the bottom of the chromosphere (just above the temperature
minimum) a little warmer to mimic the emission of modestly active stars, which in fact
represent the stars observed for the WBE. But the equilibrium conditions allow only for
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(a) Ca II K emission line of the PHOENIX solar
model (log(g) = 4.4).
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Abstract

We use the versatile PHOENIX atmospheric modeling code
in its version, which includes a gravity-scaled chromosphere
above the temperature minimum to model the Ca II K emis-
sion line profile for solar-type stars, all with Teff = 5780K and
same turbulence broadening, only with different surface grav-
ities. Models, which produce the modest emission observed
in relatively inactive stars, reproduce the Wilson-Bappu effect
(WBE) in absolute terms, i.e. the emission line-widths grow
with lower gravity consistent with ∆W ∝ g−0.17 in the range
of log g = 5.0 to 3.5. Further modeling is in process to include
lower gravities.

In the solar case, which we used as a first test, we find the
temperature minimum (over height, single component) for a
relatively inactive Sun to reach down to 3930K. The respec-
tive PHOENIX model (log g = 4.4) matches width and typical
flux of the chromospheric Ca II emission of a nearly inactive
Sun, as observed with the Hamburg robotic telescope (see Fig.
1). For comparison, the quiet Sun model C of Vernazza et al.
(1981) had a temperature minimum of 4170K.

The WBE - 57 years on

In their classic paper of 1957, Olin Wilson and Vainu Bappu
announced that higher luminosity cool stars show a systemat-
ically larger width W of their chromospheric emission in the
core of the Ca II H &K lines than those of a lower luminosity,
and that there was a linear relationship between absolute mag-
nitude and log W . In the decades to follow, and to the present
day, this Wilson-Bappu effect receives a lot of interest, for two
reasons: (1) as a distance indicator, and (2) for reflecting some
fundamental chromospheric physics.

Nevertheless, it took 16 years until in 1973 Dieter Reimers
showed empirically, that the apparent dependence ofW on the
visual absolute magnitude must stem from a physical relation
between W and the surface gravity, approximately W ∝ g−0.2.
On the same grounds, Reimers (1973) argued that there also
was a physical dependence on Teff, which would however be
masked by the increase of BC towards cooler stars. Modern
empirical studies (a recent example is Park et al. 2013) sug-
gest a similar, slightly shallower gravity dependence of about
g−0.17.

Fig. 1: Spectra of TIGRE (fomerly Hamburg robotic telescope) and its HEROS spectro-

graph (R=20 000 resolution) show the solar Ca II K line core at its basal flux level in 2009

(S=0.15, Schröder et al. 2012) and at an only moderately active level in 2014 (S=0.17), see

poster by Schröder et al. on the solar cycle 24 presented in this conference. Note that

the instrumental profile causes a broadening of about 0.2 Å, which levels the computed

emission core of Fig. 2 significantly.

Finally, Tom Ayres and Jeff Linsky (1975) explained the
Wilson-Bappu effect as a natural consequence of a chromo-
sphere in hydrostatic equilibrium (not considering any effects
of magnetic fields), where consequently the column density
scales with N ∝ g−1/2, and by the strong saturation of the
Ca II H&K emission line profil. Assuming the simple relation

of line growth in damping wings (τline ∝ N1/2), Ayres and
Linsky got a relation of W ∝ g−0.25, close enough for the sim-
plification made. More realistically, it is the transition between
the slower growing Doppler core and the damping wing, on
which line growth depends. In this case the line profile func-
tion is best given by a Voigt profile. Its slower growth explains
why the observed relation has a shallower g-dependence (see
below).

Fig. 2: Low activity chromospheric emission of the solar PHOENIX model (Teff = 5780K,

log g=4,4) with the temperature stratification of Fig. 3. The half-peak width of 0.44 Å (or

34 km/s) matches the solar, instrumental-profile corrected width of the solar K2 emission.

Fig. 3: Radial temperature (1-component) stratification in height of the solar PHOENIX

model, which produces the chromospheric Ca II K line emission of Fig. 2 and a generally

good match of the photospheric line spectrum of the Sun. The temperature minimum

reaches to 3930K.

g-scaled chromospheric models

The PHOENIX code normally is only a photospheric model,
i.e. without temperature reversal. For this work, we used our
PHOENIX version, which includes a chromospheric 1Dmodel
in hydrostatic equilibrium, with the same essential physics as
summarized above, and which therefore simply scales with
surface gravity (N ∝ g−1/2, n ∝ g1/2). See Fig. 2 for our model
of the solar case. It also matches the solar W of 0.44 Å.

Assuming a simple 1-temperature-component atmosphere,
we use the depth of the solar Ca II K line around the emis-
sion core to precisely determine the best-matching stratifica-
tion around the temperature minimum (Fig. 2). For the total
emission, we were guided by our own observations of the in-
active Sun in 2009 and the moderately active Sun earlier this
year (see Fig. 1), where the broadening effect of the instrumen-
tal profile of 0.2 Å has to be taken into account.

Reproduction of the WBE from
first principles

Using the solar effective temperature, we then computedmod-
els with different gravity in order to see, if these would re-
produce the Wilson-Bappu effect. A practical problem occurs
in that the shallow basal flux emission is too smeared out at
already log g = 3.5. Consequently, we needed to make the
bottom of the chromosphere (just above the temperature min-
imum) a little warmer to mimick the emisison of modestly
active stars – which in fact represent the stars observed for the
WBE. But the equilibrium conditions allow only for a small
margin on this. See Fig. 4 for some actual line profiles and
Tab. 1 for the set of line width measurements (flank to flank,
at half peak).

Fig. 4: Two PHOENIX models with Teff = 5780 K for surface gravities of log g = 5.0 (top)

and 3.5 (bottom). The slow increase of the width W with lower gravity (see Table 1) re-

produces well the observed WBE, W ∝ g−0.17.

log g 5.0 4.4 4.0 3.5
W/Å 0.37 0.44 0.50 0.55

Tab.1:Line width W (flank to flank, half peak) of the chromospheric Ca II K emission com-

puted by PHOENIX models for different surface gravity g and Teff = 5780K. W matches

the solar case and its growth with lower g is fully consistent with the observed relation

W ∝ g−0.17.

We do not adjust any other parameter than surface gravity to
obtain our emission line profiles (i.e., keeping turbulence ve-
locities alike) – hence, these are produced from first principles
and so represent a good test of the WBE explanation given by
Ayres & Linsky nearly 40 years ago. But now we can take pre-
cise care of the line saturation by using a Voigt profile. As a
result, our line widths reproduce the observed WBE gravity-
dependence with an exponent of -0.17 (rather than -0.25) very
well and in absolute terms.
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D. Reimers 1973, A&A 24, 79
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(b) Observational data of the solar Ca II K line core
at its basal flux (black) and at a moderately active
level (red).
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(c) Ca II K line core convoluted with a Gaussian in-
strumental profile of the TIGRE’s spectrograph, and
same observational data for the Sun at a moderately
active level as in 5.6(b).

Figure 5.6.: Instrumental profile correction for the solar model in the Ca II K line region.
The HEROS spectrograph of the TIGRE causes a broadening of about 0.2 Å, which levels the
computed emission core of the solar model to the observational evidence.
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5. Discussion and conclusions

a small margin on this.

I do not adjust any other parameter than surface gravity to obtain the emission line
profiles, i.e., keeping turbulence velocities alike. Hence, these are produced from first prin-
ciples and so represent a good test of the WBE explanation given by Ayres et al. (1975)
nearly 40 years ago. As a result, the line widths reproduce the observed WBE gravity
dependence with an exponent of -0.17 (rather than -0.25) very well and in absolute terms.

The employed method in this work for the computation of chromospheric models in-
cludes the approach of keeping mass, effective temperature, and metallicity the same for
all models. The intention of the latter was to avoid unwanted effects in the line widths
of the Ca II K emission line that may be produced by changes in such parameters. Even
though this ensures us that increase of line widths are due to changes in gravity, the tech-
nique does not allow us to use a great range in values of surface gravity because effective
temperatures become too large for smaller gravities.

This was the case of the models with log(g) = 2.5 and log(g) = 2.0, where no emission
of the K line was observed but small modifications in the temperature profile and the col-
umn mass (trying to get emission peaks) were not possible because the models were too
instable by themselves to be recomputed with new parameters. An alternative to make
this work is to compute photospheric models more consistent with low gravity stars, ad-
justing Teff , mass and radii, and to build the chromospheres from them, obtaining more
stable full models.

In this work I present the first sample of chromospheric models to demonstrate the
WBR over a range of surface gravity to date. The models show that for at least the range
of surface gravity 3.5 ≤ log(g) ≤ 5.0 the WBR is linear and behaves like

W0 ∝ g−0.17±0.02 (5.3)

Equation (5.3) seems to be well calibrated in comparison with previous studies (Wilson,
1967; Reimers, 1973; Pace et al., 2003; Park et al., 2013). It was obtained from the first
three rows in table 5.2, which shows the different relations of the line widths with surface
gravity when the models for log(g) = 5.0, 4.4, and 4.0 are compared with each other. The
error has been found statistically from the different measurements.

The following three rows correspond to the comparison made of the log(g) = 3.5 model
with the rest of them. As can been seen, the difference in the third column increases
when this model is used. Actually, the power of g decreases for models with lower surface
gravity and hence, gets far away from the previously reported value of −0.17 by Park
et al. (2013). The main reason for this to happen and to not use this model to get the

63
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relation (5.3), is that the models lose consistency as surface gravity gets lower because
the rest of the parameters (effective temperature, turbulence velocity, mass, etc.) were
not selected to match such values of gravity and hence, they are not very reliable.

Model a Model b Power of g

5.0 4.4 -0.15
5.0 4.0 -0.16
4.4 4.0 -0.18
3.5 5.0 -0.13
3.5 4.4 -0.12
3.5 4.0 -0.07

Table 5.2.: W0 relation with gravity as measured from the models. Each row gives the power
of g in the relation (5.3) when the listed a and b models are compared with each other.

It is observed that both the photosphere and chromosphere of the models are more
extended in height by the same factor with decreasing gravity, as described by Avrett
(1972). At the temperature minimum, τ also increases with decreasing gravity: for the
log(g) = 3.5 and log(g) = 5.0 models, the first has a τ more than twice as the second one
(2.158× 10−3 and 1.098× 10−3, respectively). This increased thickness leads to a greater
width of the line because it originates above Tmin. For greater thickness, the photosphere
can be seen farther out in the wings of a line, like explained in figure A.1.

In the solar case, which is used as a first test, the minimum temperature is found
(over height, single component) for a relatively inactive Sun to reach down to 3,930 K.
The respective PHOENIX model (log(g) = 4.4) matches width and typical flux of the
chromospheric Ca II emission of a nearly inactive Sun, as observed with the Hamburg
robotic telescope (see figure5.6(b)). For comparison, the quiet Sun model of Vernazza
et al. (1973) had a temperature minimum of 4,170 K (figure 1.3).

5.5. Future work
As mentioned in 5.4, the models with gravities lower than log(g) = 3.5 did not present
any emission of the Ca II K line. To continue this work and extend the W0 relation
with gravity to a greater range of gravities, more consistent photospheric models for low
gravity stars are needed.

First of all, to compute good photospheric models, the adequate stellar parameters must
be selected to (1) construct well behaved atmospheres and (2) to match the respective
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chromospheres that are to be constructed above them and which must present sufficient
emission of the Ca II K line to be measured.

The above will allow not only to measure K line widths, but to measure K line widths
that are consistent with low gravity stars and all of the parameter that determine their
photospheric and chromospheric structure. Hence, the results of the corresponding WBE
in terms of surface gravity will be even more accurate and reliable than the one presented
here.

Furthermore and to keep testing the reproducibility of the WBE, the line widths of
the Mg II k emission line of the same models will be also measured to see how do they
behave with changing gravity. As mentioned before (see §2.2), the k line is also expected
to quantitatively follow the WBE, although in a smaller degree than the K line.

Finally, as the solar model in the present work was compared with observational data,
the solar k line will also be adjusted to compare with solar observations in the UV regime
by moonlight1.

1This data is already available.
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A
Equations for the method

A.1. Radiative transfer equation
Radiant energy conservation can be mathematically described by the equation of radia-
tive transfer. Its derivation for atmospheres adopting a plane parallel configuration1,
like PHOENIX does, can begin with the assumption of traveling radiation of intensity
Iν(r, θ, t).

Let us suppose this radiation goes through the length dr and cross section dσ in the
time dt but only in the frequency interval dν. If the direction of the intensity θ is normal
to dσ and passes by a solid angle dω, then the emergent intensity will be different by an
amount of energy which is the absorbed and emitted energy within the volume element
previously describe. Therefore,

[Iν(r + ∆r, θ, t+ ∆t)− Iν(r, θ, t)]dσdωdνdt = [jν(r, θ, t)− κν(r, θ, t)Iν(r, θ, t)]dsdσdωdνdt
(A.1)

jν and κν are the emission and absorption coefficients, respectively. Now let s be the
length traveled by the ray, so ∆t = ∆s/c, c being the speed of light, and we get

Iν(r + ∆r, θ, t+ ∆t)− Iν(r, θ, t) =
(

1
c

∂Iν
∂t

+ ∂Iν
∂s

)
ds (A.2)

For time independent transfer equation and combining equations (A.1) and (A.2):

jν − κνIν = ∂Iν
∂s

(A.3)

1Approximation in which all parameters depend on one direction.
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When the geometry of the medium is divided into plane parallel layers and the angle
between the ray with its normal ẑ is θ = cos−1µ we finally can write (A.3) as

jν − κνIν = µ
∂Iν
∂z

(A.4)

Equation (A.4) is the RTE for plane parallel atmospheres.

A.2. Source function
The line source function (Sν) is defined as the ratio of monochromatic emission coefficient
to monochromatic absorption coefficient due to line processes but it may also be written
as

Sν = (1− ε)
∫ ∞

0
ϕνJνdν + εBν(T ) (A.5)

where ε is the destruction probability, ϕν is the line profile function, Jν is the mean
specific intensity and Bν(T ) is the Planck function.

The destruction probability (ε) tells us wether photons are destroyed by thermal pro-
cesses or isotropically scattered without changing their frequency. This is reflected in
different layers of an atmosphere: for deep layers (towards the core), the thermal term
in equation (A.5) dominates because collisions are important. In that case LTE is valid
and Sν = Bν(T ). On the other hand, when moving outwards through the atmosphere,
scattering is dominant because of the extended chromospheres lead to a larger mean free
path, until at some point we reach the region where photons are being lost from the star.

Λ

I Ν

logHΤL

S Ν

Radius

Figure A.1.: The figure shows the relation between the increase of the source function with
different zones of an absorption line and the radius of the atmosphere.
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This means the source function decreases outwards because temperatures drop and so
the Planck function (and hence Jν because in this region Sν = Jν), and optical depths
get smaller as well. Therefore, we get an absorption line from the outer layers of the
atmosphere while its wings are being formed in deeper layers than the line core; this is
illustrated in figure A.1.

A.3. Saha equation
To describe systems like molecules, atoms or electrons, it is essential to know the energies
of their quantum states. For a large number of particles, it is also necessary to include
the way they distribute themselves throughout the allowed anergy levels.

The well-known Maxwell-Boltzmann statistics equation (A.6) is useful to count the
number of atoms in a particular energy level and the abundances of different types of
atoms, for different excitation states but only in one particular ionization state. It gives
the fraction of atoms of a given sort (elements) which are in a certain level, in its simplest
form, it provides a ratio of the number of atoms in two particular levels.

N i

N i
1

= 1
gi1

∞∑
j=1

gije
−
Ei
j

−Ei1
κT (A.6)

where N i is the number of ions in ionization state i, N i
1 is the number of ions in the

ground state of ionization state i, gi1 is the statistical weight of the ground state of ion-
ization state i, gij are the statistical weights of excited states j of ionization state i, Ei

1 is
the energy of the ground state of ionization state i, Ei

j are the energies of excites states
j of ionization state i, and κ is the Boltzmann’s constant.

To do the same for a following ionization state, let us say the state i + 1, one has
to take into account not only the excitation states of the ion i + 1, but also of the free
electrons, whose energies and statistical weights are determined by Ee = P 2

e /2me and
ge(Pe) = 2

h3
1
ne

4πP 2
e , respectively; Pe is the momentum, me is the electron mass, ne is the

number density of free electrons, and h is the Planck’s constant. This leads to

N i + 1
N i

1
= Zi+1

Zi

2
neh3 (2πmeκT )3/2 e−χi/κT (A.7)

with Zi := ∑∞
j=1 g

i
je
−
Ei
j

−Ei1
κT . Equation (A.7) is called the Saha equation, which gives the

relative number of atoms of a given species that are in two ionization states in thermal
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equilibrium as a function of electron density and temperature.
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B
Temperature profiles

B.1. Corrections to chromospheres
The corrected temperature profiles for solar models are listed below. They include tem-
perature T in Kelvins, radius R in centimeters and column mass cm in gr/cm2 values.
Each one of them consists in 64 points corresponding to the layers that constitute the
photospheres.

T(103) (K) R(1010) (cm) cm (gr/cm2)
1 2 3

20.000 20.000 20.000 7.3064 1.7268e-06
1.0000 10.000 10.000 7.2965 1.7268e-05
9.7061 9.7061 9.7061 7.2951 2.2104e-05
9.3531 9.3531 9.3531 7.2935 2.9739e-05
8.9560 8.9560 8.9560 7.2916 4.1522e-05
8.5321 8.5321 8.5321 7.2897 5.9293e-05
8.0971 8.0971 8.0971 7.2878 8.5458e-05
7.6634 7.6634 7.6634 7.2859 1.2304e-04
7.2393 7.2393 7.2393 7.2842 1.7572e-04
6.8297 6.8297 6.8297 7.2827 2.4793e-04
6.4366 6.4366 6.4366 7.2813 3.4500e-04
6.0600 6.0600 6.0600 7.2803 4.7343e-04
5.6989 5.6989 5.6989 7.2796 6.4130e-04
5.3515 5.3515 5.3515 7.2791 8.5873e-04
5.0159 5.0159 5.0159 7.2787 1.1385e-03
4.6904 4.6904 4.6904 7.2784 1.4967e-03
4.3732 4.3732 4.3732 7.2781 1.9539e-03
4.0627 4.0627 4.0627 7.2779 2.5366e-03

Continued on next page...

71



B. Temperature profiles

T(103) (K) R(1010) (cm) cm (gr/cm2)
1 2 3

4.0000 4.0000 4.0000 7.2777 3.2788e-03
4.0000 3.9650 3.9650 7.2775 4.2243e-03
4.0000 3.9300 3.9300 7.2774 5.4295e-03
4.0000 3.8950 3.9300 7.2772 6.9662e-03
4.0000 3.8600 3.9450 7.2770 8.9261e-03
4.0000 3.8950 3.9620 7.2769 1.1426e-02
4.0000 3.9300 3.9800 7.2767 1.4614e-02
4.0000 3.9650 4.0000 7.2766 1.8679e-02
4.0000 4.0000 4.0150 7.2764 2.3861e-02
4.0301 4.0301 4.0301 7.2762 3.0463e-02
4.0690 4.0690 4.0690 7.2759 3.8868e-02
4.1099 4.1099 4.1099 7.2757 4.9563e-02
4.1496 4.1496 4.1496 7.2754 6.3160e-02
4.1938 4.1938 4.1938 7.2751 8.0427e-02
4.2327 4.2327 4.2327 7.2748 1.0234e-01
4.2814 4.2814 4.2814 7.2745 1.3010e-01
4.3177 4.3177 4.3177 7.2742 1.6529e-01
4.3717 4.3717 4.3717 7.2739 2.0976e-01
4.4033 4.4033 4.4033 7.2736 2.6604e-01
4.4627 4.4627 4.4627 7.2733 3.3700e-01
4.4899 4.4899 4.4899 7.2730 4.2675e-01
4.5524 4.5524 4.5524 7.2727 5.3975e-01
4.5758 4.5758 4.5758 7.2724 6.8268e-01
4.6421 4.6421 4.6421 7.2721 8.6236e-01
4.6641 4.6641 4.6641 7.2718 1.0895e+00
4.7396 4.7396 4.7396 7.2715 1.3736e+00
4.7636 4.7636 4.7636 7.2712 1.7314e+00
4.8609 4.8609 4.8609 7.2709 2.1722e+00
4.8930 4.8930 4.8930 7.2706 2.7195e+00
5.0349 5.0349 5.0349 7.2703 3.3664e+00
5.0831 5.0831 5.0831 7.2700 4.1411e+00
5.3029 5.3029 5.3029 7.2698 4.9755e+00
5.3789 5.3789 5.3789 7.2695 5.9031e+00
5.7875 5.7875 5.7875 7.2693 6.6896e+00
6.1403 6.1403 6.1403 7.2692 7.2867e+00
6.4542 6.4542 6.4542 7.2690 7.8015e+00
6.7583 6.7583 6.7583 7.2689 8.2798e+00
7.0439 7.0439 7.0439 7.2688 8.7490e+00
7.3151 7.3151 7.3151 7.2687 9.2304e+00
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T(103) (K) R(1010) (cm) cm (gr/cm2)
1 2 3

7.5765 7.5765 7.5765 7.2686 9.7399e+00
7.8310 7.8310 7.8310 7.2685 1.0290e+01
8.0801 8.0801 8.0801 7.2684 1.0894e+01
8.3247 8.3247 8.3247 7.2682 1.1564e+01
8.5653 8.5653 8.5653 7.2681 1.2314e+01
8.8024 8.8024 8.8024 7.2679 1.3161e+01
9.0364 9.0364 9.0364 7.2678 1.4124e+01

Table B.1.: Modified temperature profiles for solar chromosphere models.

B.2. Models with different gravities
The final output temperature profiles for models of different gravities are listed below.
They only include temperature T in Kelvins and radius R in centimeters. Each one of
them consists in 64 points corresponding to the layers that constitute the photospheres
and chromospheres. Columns are numbered according to the value of log(g).

T(103) (K) R (cm)
5.0 4.4 4.0 3.5 5.0(1010) 4.4(1010) 4.0(1011) 3.5(1011)

20.000 19.931 19.999 19.999 7.3064 3.6501 1.1571 2.0630
1.0000 9.9655 9.0000 9.0000 7.2965 3.6466 1.1555 2.0592
9.7061 9.8405 8.9983 8.9983 7.2951 3.6464 1.1555 2.0592
9.3531 9.6686 8.9957 8.9958 7.2935 3.6462 1.1555 2.0592
8.9560 9.4477 8.9917 8.9919 7.2916 3.6459 1.1555 2.0592
8.5321 9.1816 8.9855 8.9858 7.2897 3.6456 1.1555 2.0591
8.0971 8.8790 8.9758 8.9762 7.2878 3.6452 1.1555 2.0591
7.6634 8.5500 8.9608 8.9614 7.2859 3.6449 1.1555 2.0591
7.2393 8.2041 8.9377 8.9386 7.2842 3.6445 1.1555 2.0591
6.8297 7.8489 8.9022 8.9035 7.2827 3.6442 1.1555 2.0591
6.4366 7.4894 8.8485 8.8501 7.2813 3.6439 1.1555 2.0590
6.0600 7.1285 8.7681 8.7700 7.2803 3.6436 1.1554 2.0589
5.6989 6.7682 8.6506 8.6520 7.2796 3.6435 1.1554 2.0587
5.3515 6.4093 8.4835 8.4830 7.2791 3.6433 1.1553 2.0585
5.0159 6.0521 8.2548 8.2492 7.2787 3.6432 1.1552 2.0582
4.6904 5.6967 7.9556 7.9396 7.2784 3.6431 1.1550 2.0578
4.3732 5.3431 7.5836 7.5496 7.2781 3.6430 1.1548 2.0573
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T(103) (K) R (cm)
5.0 4.4 4.0 3.5 5.0(1010) 4.4(1010) 4.0(1011) 3.5(1011)

4.0627 4.9911 7.1443 7.0829 7.2779 3.6429 1.1546 2.0566
4.0000 4.6406 6.6496 6.5516 7.2777 3.6428 1.1544 2.0559
3.9650 4.2911 6.1154 5.9708 7.2775 3.6427 1.1542 2.0552
3.9300 3.9425 5.5580 5.3569 7.2774 3.6427 1.1540 2.0547
3.9300 3.9646 4.9914 4.7291 7.2772 3.6427 1.1539 2.0544
3.9450 3.9897 4.4247 4.1000 7.2770 3.6426 1.1539 2.0542
3.9620 4.0178 4.1800 4.1000 7.2769 3.6426 1.1538 2.0540
3.9800 4.0487 4.1500 4.1000 7.2767 3.6425 1.1537 2.0538
4.0000 4.0821 4.1200 4.1000 7.2766 3.6425 1.1537 2.0537
4.0150 4.1177 4.1100 4.1000 7.2764 3.6425 1.1536 2.0535
4.0301 4.1553 4.1000 4.1000 7.2762 3.6424 1.1536 2.0533
4.0690 4.1947 4.1000 4.1000 7.2759 3.6424 1.1535 2.0532
4.1099 4.2355 4.1204 4.1041 7.2757 3.6423 1.1535 2.0530
4.1496 4.2774 4.1648 4.1497 7.2754 3.6422 1.1534 2.0529
4.1938 4.3199 4.2094 4.1949 7.2751 3.6422 1.1534 2.0527
4.2327 4.3626 4.2545 4.2403 7.2748 3.6421 1.1533 2.0524
4.2814 4.4049 4.3003 4.2859 7.2745 3.6420 1.1532 2.0522
4.3177 4.4466 4.3465 4.3316 7.2742 3.6419 1.1532 2.0519
4.3717 4.4874 4.3931 4.3776 7.2739 3.6419 1.1531 2.0517
4.4033 4.5270 4.4398 4.4237 7.2736 3.6418 1.1530 2.0514
4.4627 4.5661 4.4863 4.4697 7.2733 3.6417 1.1529 2.0511
4.4899 4.6032 4.5325 4.5159 7.2730 3.6416 1.1528 2.0509
4.5524 4.6414 4.5786 4.5626 7.2727 3.6416 1.1528 2.0506
4.5758 4.6765 4.6252 4.6107 7.2724 3.6415 1.1527 2.0504
4.6421 4.7156 4.6729 4.6608 7.2721 3.6414 1.1526 2.0501
4.6641 4.7512 4.7228 4.7139 7.2718 3.6413 1.1525 2.0499
4.7396 4.7954 4.7763 4.7707 7.2715 3.6412 1.1524 2.0496
4.7636 4.8373 4.8348 4.8324 7.2712 3.6412 1.1523 2.0493
4.8609 4.8957 4.9005 4.9006 7.2709 3.6411 1.1523 2.0491
4.8930 4.9558 4.9773 4.9794 7.2706 3.6410 1.1522 2.0488
5.0349 5.0457 5.0699 5.0718 7.2703 3.6409 1.1521 2.0485
5.0831 5.1464 5.1865 5.1869 7.2700 3.6409 1.1520 2.0483
5.3029 5.3000 5.3396 5.3376 7.2698 3.6408 1.1519 2.0480
5.3789 5.4851 5.5376 5.5426 7.2695 3.6407 1.1518 2.0477
5.7875 5.7769 5.8155 5.7777 7.2693 3.6407 1.1517 2.0475
6.1403 6.1574 6.1845 6.1994 7.2692 3.6406 1.1517 2.0473
6.4542 6.4406 6.4979 6.4935 7.2690 3.6406 1.1516 2.0472
6.7583 6.7148 7.3096 7.3039 7.2689 3.6406 1.1516 2.0471
7.0439 6.9807 7.7665 7.8186 7.2688 3.6405 1.1516 2.0470

Continued on next page...

74



B. Temperature profiles

T(103) (K) R (cm)
5.0 4.4 4.0 3.5 5.0(1010) 4.4(1010) 4.0(1011) 3.5(1011)

7.3151 7.2415 8.1396 8.2104 7.2687 3.6405 1.1515 2.0469
7.5765 7.5002 8.4590 8.5279 7.2686 3.6405 1.1515 2.0469
7.8310 7.7580 8.7475 8.8072 7.2685 3.6404 1.1515 2.0468
8.0801 8.0156 9.0180 9.0666 7.2684 3.6404 1.1515 2.0467
8.3247 8.2727 9.2779 9.3154 7.2682 3.6403 1.1514 2.0466
8.5653 8.5289 9.5317 9.5590 7.2681 3.6403 1.1514 2.0465
8.8024 8.7837 9.7822 9.8010 7.2679 3.6403 1.1513 2.0464
9.0364 9.0370 1.0031 1.0043 7.2678 3.6402 1.1513 2.0462

Table B.2.: Temperature profiles of the models with different gravities.
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