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Abstract

I use the versatile PHOENIX atmosphere modeling code, which includes a gravity scaled
chromosphere above the temperature minimum to model the Ca II K emission line profile
for solar type stars, all with 7.y =5,780 K and same turbulence broadening, only with
different surface gravities. Models, which produce the modest emission observed in rel-
atively inactive stars, reproduce the Wilson-Bappu effect (WBE) in absolute terms, i.e.
the emission line-widths grow with lower gravity consistent with W, oc ¢g=%!7 in the range
of log(g) = 5.0 to 3.5.

In the solar case, which was used as a first test, I find the temperature minimum
(over height, single component) for a relatively inactive Sun to reach down to 3,930 K.
The respective PHOENIX model (log(g) = 4.4) matches width and typical flux of the
chromospheric Ca II emission of a nearly inactive Sun, as observed with the Hamburg
Robotic Telescope, and also matches the solar Wy of 0.44 A. For comparison, the quiet
Sun model (figure 1.3) of Vernazza et al. (1973) had a temperature minimum of 4,170 K.

Using the solar effective temperature, I then computed models with different gravity in
order to see if these would reproduce the WBE. A practical problem occurs in that the
shallow basal flux emission is too smeared out at already log(g) = 3.5. Consequently, I
needed to make the bottom of the chromosphere (just above the temperature minimum)
a little warmer to mimic the emission of modestly active stars, which in fact represent the
stars observed for the WBE. But the equilibrium conditions allow only for a small margin
on this.

I do not adjust any other parameter than surface gravity to obtain the emission line
profiles. Hence, these are produced from first principles and so represent a good test of the
WBE explanation given by Ayres et al. (1975), 40 years ago. As a result, the line widths
reproduce the observed WBE gravity dependence with an exponent of -0.17 (rather than
-0.25) very well and in absolute terms.
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Introduction

1.1. Motivation

The Wilson-Bappu effect describes the observed increase of the width of the chromo-
spheric Ca II (as well as Mg II) emission lines of cool stars and giants with increasing
luminosity and hence, decreasing gravity. This is a well-defined relation, which hardly
depends on any other parameters, and that can be derived from inactive or active stars.

Despite the WB effect was discovered 57 years ago, and it has been understood in princi-
ple since 40 years, it has still not been modeled precisely because (1) chromospheric models
are in general not trivial and require a good photospheric model to start with, and (2)
the easier to observe emission of active stars is known to not follow the WB effect reliably.

The stellar and planetary atmosphere code package PHOENIX has been developed
and steadily improved over two decades. It can calculate atmospheres all across the HR-
diagram as well as rapidly expanding atmospheres as found in novae and supernovae.
The PHOENIX code comes with a very rich opacity library (including molecules), and a
state-of-the-art equation of state, hence, it is capable of handling very cool temperatures
as those found in giant stars.

In addition, the PHOENIX code manages atmospheres in spherical geometry and also
accounts for extreme NLTE conditions, which are both important issues for modeling
chromospheres of giants. Furthermore, this code already has a mode to include a chro-
mosphere in a semi-empirical way in the stellar spectra. This chromospheric mode has
been successfully applied by modeling M-dwarf chromospheres.

Well-tested, accurate photospheric PHOENIX models already exist for cool giants, but
these artificially end in the temperature minimum. Hence, all weak and medium photo-
spheric lines are matched excellently. But emission from the chromospheres, as observed
in the very strongest lines such as Ca II K, caused by the outwardly increasing tempera-



1. Introduction

ture in the chromospheric layers, has so far been left unconsidered.

The fundamental nature of this problem and since no quantitative chromospheric mod-
els exist so far, make the Wilson-Bappu effect a problem that has fascinating the experts
in the field since it was first discovered. In addition, it has neither been reproduced to
fully match the observational evidence.

Today’s much improved knowledge of stellar activity, accurate distances and compu-
tational power allow us to revise and improve the observed Wilson-Bappu effect and to
finally use it as a principal guide and benchmark-test for models of the inactive chromo-
sphere, which is governed by relatively simple equilibrium physics.

This work aims on reproducing a very modest emission of stars with different gravities
not much above the basal flux by using the chromospheric extension of the PHOENIX
code.

1.2. Stellar atmospheres

If we imagine a star as a family of spherical layers of different radii sorted one next to
another, we can study it by regions formed by a certain number of these layers. Of course
this is only a simplification, and although we study stars by regions, all of them are in-
teracting with each other and cannot be completely physically detached. Following this
scheme, from the core outward are the radiative zone, the convection zone, the photo-
sphere, the chromosphere, a transition region, and a corona (figure 1.1). The atmosphere
is the region surrounding a star and it goes from the photosphere through the corona.

This region is of great importance because it is a transition region between the interior
of a star and the interstellar medium. At the same time, the atmosphere is subdivided
into smaller sections which are a function of kinetic temperature!: sub-photosphere, pho-
tosphere, chromosphere, transition region, and corona.

The radiation transmitted into space from a star, which is the one we see and measure,
is emitted from the photosphere. This is the region where deep layers (towards the core)
of a star start to be visible, i.e., it is the outermost opaque layer but its opacity (7) is
smaller than 1. The radiation emitted in deeper zones than the photosphere will not
escape and will not reach us because the high temperatures and densities do not allow
the material within it to leave, and material in the outer zones having low density and
7 < 1 will hardly emit radiation.

ITemperature of atoms due to their random velocities.
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1. Introduction

Figure 1.1.: Scheme of solar interior structure. The zones are labeled as follows: 1) Stellar
core, 2) Radiative zone, 3) Convective zone, 4)Photosphere, and 5) Chromosphere. The corona
is the region surrounding the chromosphere, and the transition region is located between them.
The scheme is not scaled.

The temperature drops across the photosphere until a minimum temperature value is
reached, which is the beginning of the chromosphere. After that point, temperatures will
rapidly increase with height (h). The photosphere’s height or thickness varies for different
kinds of stars as h oc g~ !, where g is the surface gravity. For the Sun this value is of about
1,000 kilometers and its density is around 10~8¢g/cm?.

Although the stellar radiation we receive comes from photospheres, the energy itself is
produce in deeper zones of the stellar interior, where nuclear reactions take place. For the
energy to reach the optically thin region, it has to be transported to outer zones by means
of convection or radiation. But convection is not always possible, its viability is determined
by the Schwarzschild criterion® which establishes that the radiative temperature gradient
has to be smaller than the adiabatic temperature gradient to assure convection:

d£
dr

dr

<l (1.1)

ad rad

2Proposed by K. Schwarzschild in 1906.
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1. Introduction

Furthermore, convection does not always occur at central zones but can be present in
the outer zones as well. For hot stars (7 ~ 10,000 K), central convection is seen due to
the high luminosities produced at their cores, while for cool stars like the Sun (755 =5,780
K) convection is more likely to be present at outer zones.

When the density gradient (l%) is much more steeper than the temperature gradient
pdr

(59T, we can write
1d 1dT
s 2O (1.2)

pdr T dr

But increasing density will have a direct effect on the gas pressure (P,,;), and the same
goes for the temperature gradient with radiation pressure (P,.q). Hence, equation (1.2)

can be rewritten as

Pgas > Prad (13>

On the other hand, if we assume to have an ideal gas in the atmosphere, the internal
energy of such gas will be in the form of kinetic energy. In addition, any change in internal
energy will be accompanied by a change in temperature. Following this assumption, the
ideal gas law tells us that

PV =nRT
nRT
- P=—
Vv
MV
pRT
P=—
- M

where n is the molar number, m is the mass of the gas, M its molar mass, V' the
volume it occupies, T' the temperature and R the gas constant. Equation (1.4) is par-
ticularly interesting because it links the three more important parameters of gases (pT'P).

In statistical mechanics, while working with particles, the gas constant is equivalent
to R = Nk, with kK and N4 being the Boltzmann and Avogadro constant, respectively.
The latter can also be represented as Ng = M/m,, where M is the molar mass constant
and m,, is the atomic mass unit. Hence, for a particle of mass p times the atomic mass,
equation (1.4) is

P=kTp (1.5)

[y,

where p = nM/V is the mass density of the particle. Furthermore, from hydrostatic
equilibrium we know that 22 = —p(r)g, feeding (1.5) into this:

12
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dr My
1 d
— kTp o _ —p(r)g (1.6)
iy, dr
dp 1
= = —gpna—zp(r)

The solution to (1.6) is an exponential function modulated by the initial value py =
p(rg), where the scale height is defined as hy = % and h = r — rg. This equation is
shown below, and it is known as the Barometric Law.

p(r) = poe"/™ (1.7)

The Barometric Law tells us that for each distance hg, density will change by a factor
of e. In giant stars, which have big scale heights, one find very low densities if compared
with MSS. The solar scale height is about hy ~ 300 km.

1.3. Model atmosphere

Analyzing stellar spectra provides the opportunity to study stars and to get a great
amount of information about the physical state of their atmospheres. Although energy
production takes place in the core of stars, all the radiation we measure has to first pass
through an atmosphere. This process will throw light on the factors not only of the core
but of the entire atmosphere as well.

Some examples of stellar parameters determined from spectra are radial velocity, which
is gotten by measuring the shifted lines due to the Doppler effect, effective temperature?® by
observing certain absorption lines that are representative of temperature ranges because
their atomic transitions can only exist at such energy extend or by finding the maximum
intensity to apply Wien’s law (see figure 1.2), and chemical composition, between others.

3Temperature of a black body having the same luminosity and radius as the star.
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Figure 1.2.: Scheme of Wien’s law. The curves represent Planck’s functions for the different
indicated effective temperatures, while the black dots indicate the respective wavelengths at
which the emission has its maximum.

All of the above measurements require thorough analysis, and a meticulous interpreta-
tion cannot be made in some cases. It is then when we are encouraged to make physical
assumptions and create hypothesis trying to reproduce and, even more important, to ex-
plain the features concerning the incoming radiation. Such hypothesis are turned into a
model which must obey physical laws and match observations that will be basically used
to test it. If needed, the model is modified to bear accurate resemblance to the available
observations and once that has been done, one can think in using it to reproduce phe-
nomena. Furthermore, when a model is worth of trust, it may also be used to understand
properties of stars that in other cases would remain as an enigma. It has to be established
then, that theoretical models are elemental in modern astrophysics.

In the case of model photospheres, one often refers to a “classical model atmosphere”
where only the photosphere is being calculated and not the chromosphere, transition
region, nor stellar winds. However with the increase of research in the field, the develop-
ment of new and modern codes, and the increasing computer power, nowadays it is hard
to label one model as the classical one. Nonetheless, the most common way to produce
such models is to assume energy conservation, hydrostatic equilibrium, LTE, and plane
parallel geometry or spherical symmetry for geometrically extended stars.

How valid and reliable these assumptions are will depend on the desired degree of detail
we are working with, and on many more physical properties that can be included without
producing an inconsistent model. A clear example of the latter is the so-called line blan-
keting, which causes models to give the impression of being blue shifted with respect to
observations, specially for cool stars where the red/infrared part of the spectrum appears

14



1. Introduction

enhanced relative to a star with a non-blanketed spectrum.

On the other hand, since the line formation problem consists in solving two equations
simultaneously, it is one of the biggest challenges when modeling photospheres. In order
to get through this, it is necessary to apply numerical methods that allow us to solve (1)
the radiative transfer equation for all the wavelengths we are interested in and (2) the
equation of statistical equilibrium when NLTE is used, i.e., the line source function; the
analogous for LTE is the Boltzmann equation (A.6). The implementation of Accelerated
Lambda Iteration (ALI) methods, well described by Hubeny (2003), is very popular in
stellar atmosphere modeling to obtain a formal solution of such problem due to the high
degree of complexity and accuracy it offers.

1.4. Chromospheres

A stellar chromosphere is a region within the atmosphere of a star where the temperature
increases outwards after a minimum temperature value (7,,;,,) is reached in the upper part
of the photosphere and it is found in cool late type stars of spectral type F, G, K, and M.
This effect is known as temperature reversal and can be detected through spectral analy-
sis, specially in lines whose optical depth is high in the chromosphere and whose behavior
within it differs from that within the photosphere (Zirin, 1971). Carrying on this spectral
analysis one would be able to tell wether a line has been formed in the chromosphere and
hence prove the existence of a temperature reversal. The region in the atmosphere where
this effect is seen is also known as reversing layer.

A value of about 4,300 K for the temperature minimum for the Sun was proposed by
Avrett and Linsky (1970), who solved the hydrostatic and ionization equilibrium equations
to produce a solar atmospheric model; they also found the chromosphere’s properties to
be relevant in the shaping of the wings of singly ionized calcium (Ca II). In a similar way
and although some large error bars on observations, the Harvard Smithsonian Reference
Atmosphere (Gingerich et al., 1971) predicts a 4,170 K minimum; such model is consistent
with observational data on different wavelengths including ultraviolet, visible and infrared
spectrum.

But probably the most famous chromosphere model is that of Vernazza et al. (1973),
who determined an empirical temperature distribution for the solar atmosphere, the ”so-
called” VAL models. They adopted a slightly smaller value for the temperature minimum
than the previous models, setting it to 4,000£100 K in order to have a spectrum that
agrees with solar observations between 505 A and 1.5 cm.

15
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Figure 1.3.: Solar atmosphere temperature-height distribution as determined by Vernazza et al.
(1973). Height is given in kilometers measured above zero point where 7 = 1. Regions of line
formation are also indicated. From right to left: photosphere, temperature minimum (4,100 K),
chromosphere, transition region (> 8,500 K), Lyman valley (20,000 K), and corona.

This model was obtained by trial-and-error temperature adjustments and it includes
some arbitrary values in regions where spectra provided little information about the tem-
perature structure (region between 1,000 and 2,200 km in figure 1.3), as well as a relatively
low temperature maximum in the chromosphere of 8,500 K. Despite these assumptions,
this model is by far the most accepted and cited model atmosphere to date.

1.4.1. Physics of chromospheres

As we saw in the previous section, the dependence of hy on ¢ it is mainly determined
by the properties of the particles within the photosphere. But when we move outwards
through the chromosphere, gravity will play an important role in the way density changes
and the consequences of it.

In the chromosphere, low density values turn out into lower collision rates that can
be compared with radiative rates. In this case, pressure is mostly caused by turbulent
motions and can be calculated from the kinetic energy (Ef) that produces such motions:

Er = imUQ

1
— Ex = 5(,0‘/)1)2 (1.8)
1

— P = _?
2" P

16
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where P = E7K, v is the turbulent velocity, m the mass of the particles and V the
volume they occupy. Assuming hydrostatic equilibrium (% = —p(r)g) we get
dp _ 2g
ar —ﬁp (1.9)
whose solution is given by
plr) = poe™ " (1.10)

Hence, scale heights for chromospheres (ho = %) go up with lower gravity and densities
become smaller.

But what makes the presence of a chromosphere possible? First of all, a temperature re-
versal indicates that atmospheres holding chromospheres are not in radiative equilibrium
as thought before, i.e., temperatures do not diminish radially through the atmosphere,
and a responsible physical mechanism for this reversal has not yet been fully determined,
but well studied. However, the more relevant processes for chromospheric heating have
been determined to be magnetic heating by magnetic field dissipation and acoustic waves
by shock dissipation, alone or both together (Narain and Ulmschneider, 1990; Ulmschnei-
der, 2003; Kraft et al., 1964). Chromospheres lose large amounts of energy by radiation,
hence their heating mechanism has to be effective enough to prevent them from cooling.

Heating by dissipation of acoustical waves has been extensively supported in the liter-
ature since the discovered of such high temperatures in the atmospheres. Acoustic waves
are supposed to be generated by convective motions in the upper zones of the photosphere.
These waves propagate naturally in an outward direction and carry certain amount of en-
ergy that depends on their velocity (v) and density (p) (Narain and Ulmschneider, 1990):

F = v?pc, (1.11)

where F' is the mechanical energy flux and ¢, the sound speed. As the outer zones
of the atmosphere have smaller densities, the waves’ amplitude will increase, which can
also be translated as an increment of transported energy, forming shocks and heating the
surrounding medium.

The most significant way in which magnetic fields promote the heating of chromospheres
is by direct dissipation forced by large scale magnetic flows. The idea is that when they
encounter smaller magnetic zones (like sunspots) sufficiently close to produce an effect on
them, the fields immersed in these regions will be shrunk together causing dissipation of
magnetic energy (Ulmschneider, 2003).

17
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Activity is also used to study the properties of phenomena within the chromosphere.
The most important parameter for measuring activity is without doubt the Mount Wilson
S-index, whose measurements began with the Mount Wilson HK-Project in 1966 (Wilson,
1978). The S-index was defined with a four-channel spectrophotometer that was built
specially for the measurement of stellar chromospheric calcium emission (Vaughan et al.,
1978). It is a composition of these channels as follows:

Ny + Nk

S=a——— 1.12
OéNv—FNR ( )

where Ny, Ni, Ny, and N are the photon counts in the H and K line cores, in 4001.07
A, and in 3901.07 A, respectively. Moreover, the S-index has been used to calculate ac-
tivity periods, to classify variable and ciclic stars (Baliunas et al., 1995).

So far we have seen some aspects of the chromosphere that are very important to
construct such a structure and to understand the basics of its behavior. But how does the
physics of the photosphere differs from that of the chromosphere?. There are a few things
which have to be treated in a different way between them because, since the physical
conditions are different, we cannot just apply the same rules neither expect the same laws
to define the environment. Those aspects are to be listed in table 1.1.

18
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Photosphere

Lower chromosphere

Upper chromosphere

High density values (~ 10~7gr/em?)
Collisional rate > Radiative rates
Ca1,C12 >B12,Bas
LTE: To- = Tewe = Tion = Trad
S, = B,(T)

Maxwell distribution is valid
Boltzmann equation is valid
Saha equation is valid

Planck radiation is true

Epin
Pyas > 53
Total redistribution

Plane parallel geometry is valid

Low density values (~ 107t gr/cm?)
Collisional rate ~ Radiative rates
Ca1,C12 ~B12,Ba1
Near LTE: T,- ~ Tepe ~ Tion 7# Trad
Sy = €By(T) + (e —1)J,
Maxwell distribution is valid
Boltzmann equation is valid
Saha equation is valid

Planck radiation is not true

Egin
Pgas ~ Vol

Partial redistribution

Plane parallel geometry is not valid for giants

Extremely low density values (~ 10~gr/cm?)
Collisional rate <« Radiative rates
C21,C12 <Bi12,Ba1
non-LTE: T,- # other temperatures
Sy~ Jy
Maxwell distribution is valid
Boltzmann equation is not valid
Saha equation is not valid

Planck radiation is not true

Epin
Pyas < 513
Partial redistribution

Extreme non-plane parallel geometry (Rep, > R.)

Table 1.1.: Differences in physics between photosphere and chromosphere.
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1. Introduction

1.4.2. Chromospheric lines

Since the chromosphere is a very thin layer (in terms of density), it can only radiate in
the very strong emission lines. The most prominent characteristic lines of a chromosphere
are H,, Mg II (h+k), and Ca II (H+K). First spotted by Joseph Fraunhofer in 1814,
the resonance doublet lines* H and K of singly ionized calcium at 3,968 A and 3,933 A,
respectively, are the deepest and broadest absorption lines in the visible solar spectrum;
K being more representative since the H line can be affected by surrounding atomic lines.
Further more, both of them can be used as a tool of spectral classification, as they are
characteristic for late type stars.

Both of them (H+K) are the only resonance lines in the visible solar spectrum pro-
duced by an ionized abundant element (Linsky and Avrett, 1970). In addition, their line
formation process takes place in the upper photosphere and lower chromosphere, so they
allow us to study such an important region in more detail. For cool stars, emission at
the center of these lines can be seen in areas surrounding magnetic features, like sunspots.

In most of the stars whose spectra are known to show Ca II features, the emission tends
to be weaker than the continuum spectrum outside the absorption wings. This emission
represents chromospheric radiation, while the absorption is produced by the upper zone
(or last strata) of the photosphere. But in general, the center of a line is formed at cooler
and higher regions in the atmosphere, while the wings depend on hotter and deeper layers
(see figure A.1).

A main difference between spectral lines produced in the photosphere and in the chro-
mosphere is that the latter produces emission lines instead of absorption lines. This can be
easily explained in terms of the temperature profile of the atmosphere: along the photo-
sphere and in an outward direction, temperature decreases until a minimum temperature
value, that indicates the beginning of the chromosphere, is reached as shown in figure 1.3.
Since the emitted radiation from the inner photosphere have to pass through cooler gas
to reach us, the atoms of this gas will create absorption lines.

On the other hand, when they traverse the inverted temperature gradient of the chro-
mosphere which have low density, we will get emission lines in the spectrum. A good
example of this is illustrated in figure 1.4, where the aspect of the H,, line varies with the
position of the measurement relative to the center of the Sun. In particular, the Ca II H
and K emission lines have been studied by several authors, and Linsky and Avrett (1970)
gave a good extensive description of their observational features focused in the solar case.

4Spectral line caused by a transition between the ground state and the first energy level of an atom.
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Figure 1.4.: Aspect of the solar H, emission line relative to the position of the measurement

in the solar disk; the numbers indicate greater distance from the center, Pos #1 corresponds

to the center of the solar disk and Pos #4 to the outer zone of the chromosphere. Taken from

observations of Jean-Pierre Rozelot in the Pic du Midi observatory in 2009.

These aspects can also vary with other physical parameters like temperature, amount
of present atoms or gravity. The effects of surface gravity can be visible in stellar spectra,
specifically, in their lines. At a given temperature, a line will be more pressure broadened
if the surface gravity is larger. Pressure broadening refers to the increase of spectral line
widths caused by collisions between the atoms that produce the lines.

The equivalent line width (Wj) is a very common quantity used to describe spectral
lines and it is useful to compare their strengths between each other. Its definition is given
in terms of the fluxes at the continuum (Fj) and at the line (F)) as follows

WOE/ab (1—2) d\ (1.13)

where the interval ab should cover those wavelengths for which 1 — ? is different from
zero. To measure it, one must first calculate the area of the spectral line with respect to
the continuum level and then replace the line profile with a rectangle of same intensity
and area; the width Wy of such rectangle corresponds to the equivalent line width (see
figure 1.5).

In the figure, the upper panel represents a case where there is a continuum for reference
but this is not the case for pure emission lines. Hence, the presence of the continuum
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as a reference indicates there should be absorption as well, which turns into a problem
since emission and absorption start mixing. It is logical to think then, that the respective
equivalent widths will also be mixed and the components may be cancelled.

Therefore, if the concept of equivalent width cannot be applied, one needs to model
and work with the entire profile of the lines just as in the case of calcium lines.

But the shape of spectral lines do not depend only on broadening processes related to
the abundance of the elements, but also on the details of photon absorption in terms of
the amount of matter encountered along the way (i.e., the column mass density) and on
scattering.

The column mass density is given by the amount of mass of a certain specie present
along a path. It has units of mass over area and its expression is

o= /abp(z)dz (1.14)

where p is the volumetric mass density and z represents a height direction.

If we increase the amount of present atoms, the intensity of pressure broadening will
increase as well. This results in a growing line width that can be so important to even
contribute to the wings of lines, see figure 4.1(b).

Of all these parameters, the most relevant and important one for this work is with no
doubt surface gravity. The mentioned H and K lines have the particularity of varying
their line widths with different surface gravities, an effect known as the Wilson-Bappu
relation. This phenomena has been studied over the past ~ 60 years and numerous ob-
servational evidence is available in the literature, but it has never been fully reproduced
neither quantitative chromospheric models exist so far.

The current work aims to revisit, reproduce and improve the calibration of the Wilson-
Bappu effect, described in chapter §2, with models of inactive chromospheres of different
gravities. Chapter §3 is dedicated to illustrate the generalities of the stellar and planetary
atmosphere code PHOENIX, which is used to compute the synthetic spectra needed to
measure the Ca II K width lines.

In chapter §4, the methodology of this work is described and the results are presented,
which are discussed in §5.
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Figure 1.5.: Equivalent line width of spectral lines. Wavelength and intensity are given in
arbitrary units. The background level represents a value of zero intensity.
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The Wilson-Bappu effect

2.1. Discovery and history

The Wilson-Bappu effect is a remarkable empirical relation between the width (Wy) of
the K emission line of Ca II and the absolute visual magnitude (My ) of late-type stars.
It was first discovered by O.C. Wilson and M.K. Vain-Bappu in 1957 (Wilson and Bappu,
1957) while doing high dispersion spectral analysis.

To achieve this, they used 185 spectra of late type stars of which about 24 spectrograms
of 10 A/mm dispersion were taken a few years earlier with a coudé spectrograph at the
Mount Wilson Observatory, located at Pasadena, California. Further observations were
included into the sample in order to have homogeneous material. All the stars in the final
sample had spectrograms made at Mount Wilson or at Palomar Observatory.

The line widths were measured for stars of spectral type G, K, and M , taking care of
discard underexposed plates. Then they were corrected for instrumental width; in general,
line widths ranged between 33 — 39 km/s and 15 km/s were subtracted from each one
to account for this correction. When their logarithms were plotted against the respective
visual absolute magnitude!, a defined straight line was found (figure 2.1).

!Based on the Yerkes absolute spectroscopic magnitudes.
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Figure 2.1.: K line widths plotted against Yerkes’ My by Wilson and Bappu (1957). The solid
line is the best linear adjustment drawn by eye and the dashed ones indicate £10% error in the
measurement of Wy. This plot includes all the stars in the original sample, distinguished by
spectral types G, K, and M.

Even though at the time no theory relating My and W, was available, Wilson and
Bappu (1957) found the width of the K emission line to be determined solely by the
absolute magnitude of the star, being independent of spectral type (and hence effective
temperature), intensity, and valid over a 15 magnitud range:

Wy o< LY/6 (2.1)

where L is the luminosity of the star. Ten years later this relation was derived by
Wilson (1967) using a sample of Hyades to be that in equation (2.2). Further work also
shows this line width to be independent of the intensity of the K reversal (Zirin, 1971),
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2. The Wilson-Bappu effect

and of metallicity (Gémez, 2012).

Such line is the widest and deepest absorption line in late type stars. Since it is very
representative of chromospheres, the modern study of the latter is based on it, as well as
on the H emission line, both which appear as double reversed emission lines.

A few more efforts to ameliorate this relation and diminish its errors found it difficult
to accomplish because of the lack of precise parallaxes back in the date (before Hippar-
cos database), methods for widths measurements and chromosphere models. However,
more than four decades later, Pace et al. (2003) made an improvement of the calibration
with high resolution spectra while digging into the possibility of use the WB effect as a
method to determine accurate stellar distances, which has always been one big problem
in astronomy, and concluded the relation (2.3) is followed.

My = —18.0log(Wp) + 33.2 (2.3)

This was possible thanks to the accurate measurements of Hipparcos parallaxes; similar
studies by Wallerstein et al. (1999) and Gémez (2012) indicate that it is possible to cal-
ibrate such relation from parallaxes and that it is insensitive to metallicity, respectively.
Distance determinations for high luminosity stars are among the most popular applica-
tions of the WB effect: observing emission line widths leads to absolute magnitudes, which
set distance constraints.

In the present work, I intent to relate the line widths of Ca II K to the basic quan-
tity gravity. There are previous attempts to do this, as that by Reimers (1973), who
got the first empirical approach to the dependence on gravity, arguing that My is not
a fundamental stellar parameter and that if W, depends on luminosity (L o %Tff )y it
should also vary with gravity and 7,;;. He took observations, converted the luminosity
dependence into gravity dependence and came up with relation (2.4a), which is roughly
the same as (2.4b), obtained by Park et al. (2013) forty years later, who extended the

WBR to be an excellent indicator of surface gravity for late type stars.

WO x g—0.20:|:0.02 (24&)

Wy oc g~ 17 (2.4b)

27



2. The Wilson-Bappu eftect

On the other hand, Ayres (1979) who already knew that the exponent on gravity had
to be small (~ 0.20), was working from first principles, from theory only and he arrived
to the conclusion that the WBR must be a consequence of hydrostatic equilibrium rather
than chromospheric dynamics, i.e., "The thickening of stellar chromospheres with decreas-
ing surface gravity implies a broadening of the base of the emission core in effectively thick
lines such as K...”. In other words, he established that the WB effect is a consequence of
surface gravity of the star.

In general, this is a topic that has fascinated everybody in the field of chromospheres
of cool stars over the last (almost) 60 years, including the experts such as Wilson (1967)
himself, Ayres (1979), Linsky and Haisch (1979), and Reimers (1973), and obviously the
reason is that this expresses fundamental physics of chromospheres. Nonetheless, these
methods are purely observational and a theoretical approach with chromosphere modeling
has not yet been made.

2.2. Physics of the WBR

The K and H lines of the doublet Ca II are located at 3,933 A and 3,968.5 A, respectively,
and they are produced at the very bottom of the chromosphere, where temperatures
oscillate around 4,000 K (Vernazza et al., 1973). They are then, a special feature of chro-
mospheres and serve as a probe to study their physical properties.

These lines are very opaque with line center optical depths of the order of 107 in the
photosphere and 10? at the temperature minimum (Linsky and Avrett, 1970). For giant
stars it is easier to measure them in late life stages: as a MSS passes to the giant stages
its radius increases, and if we follow L oc R?, its luminosity will increase as well making
the Ca II K emission line feature get stronger. Thus, the WB effect is more feasible to
be measured in late type stars, which in addition, have more magnetic activity in the
chromosphere. Activity, metallicity, effective temperature, and column mass density are
the most explored parameters in relation with the Wilson-Bappu effect.

The effects of metallicity ([F'e/H]) on the WB effect have been studied by several au-
thors too, beginning with Wilson and Bappu (1957), who did not find any dependence on
[Fe/H]. Later on, Dupree and Smith (1995) noted a diminished line width for stars with
[Fe/H] < 2.0, and Pace et al. (2003) showed the WBR was valid when this value is not
lower than ~ —0.4. But the parallaxes used by the first lacked of accuracy due to distance
and the findings of the laters was too subtle. With Hipparcos parallaxes and data from
two globular clusters, Gémez (2012) demonstrated that the WB effect is insensitive to
metallicity.

Another interesting parameter to mention is effective temperature. Although the term
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Terr appears in some of the derived generalized equations of the WBR (Reimers, 1973;
Neckel, 1974; Ayres, 1979), the found dependence on effective temperature of W} is rather
small: Wy oc T¢;, with 1.3 < a < 1.7. An explanation of such a small dependence is that
since W) is related with luminosity (as observational evidence indicates), there will be a
dependence on T¢ss because L oc =T, e4f - Hence, when using the last expression to relate
Wy with g, the temperature dependence will take place automatically. But if we take a
different approach and relate Wy with visual magnitudes, as Reimers (1973) did and as
most authors do, we will be making use of bolometric correction (BC) which depends on
effective temperature as BC' ~ —5.41og(T.ss):

log Wy = AMy + B
=A(M,— BC(T))+ B
= —2.5Alog(L) — ABC(T) + B
= —25Alog (R*T};;) — ABC(T) + B
= —2.5Alog (R*T/;;) + 5.4Alog(T.sy) + B
= —5Alog(R) — 10Alog(T.ss) +5.4Alog(Tesy) +B

This means that when we convert the WBR in terms of My, as described above, we
need a large BC' for cool stars that gets even larger for cooler giants.

In other words, T, s, takes place in the original relation of line widths (W, oc L%) but it
disappears when using the form My o log(W;)? as the bolometric correction compensates
(bold term in equation (2.5)) the effect of temperature for cool stars.

Column mass density in the chromosphere is also related to the width of such line
because it is so optically thick that the increase of its width corresponds to an increase in
column density in the chromosphere. Ayres et al. (1975) analyzed seven high resolution
stellar spectra and reached to the conclusion that K width—luminosity relation can be
attributed to the variation of column mass density with gravity. Their measurements led
to

My ~ —(12 £ 2)log Wy + C (2.6)

And applying the bolometric correction to My described above they were also able to

find

W o g70.27i0.o4Te1fzJ1cio.2 (2.7)
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where W is half of the distance between the minimums of the K doublet. Although in
equation (2.7) Wi has a dependence on Ty, it can be ignore among F to K stars because
the difference between them in T,¢s (around 50%) is small compared with the difference
in surface gravity (Alog ~6.0).

Furthermore, Ayres et al. (1975) suggested how the chromospheric physics may work
by arguing that the WBE can be attributed to the variation of column mass density (cm)
with gravity (g). First of all, they used hydrostatic equilibrium to relate column mass
density with gravity as:

P, oxg-cm (2.8)

where P, is the electron pressure. But since k o< P,, with x being the opacity, then we
can write

KX g-cm (2.9)

which by integration over cm leads to 7* o< em*?g. The quantities marked with *
indicate the parameters have been evaluated at the temperature minimum. Then they
use the argument that all chromospheres have the same continuum optical depth at this
temperature minimum, meaning 7* is independent of gravity. This final and strongest
assumption conducts to the following relation:

em* o< g2 (2.10)

In addition, if we use the fact that density n goes as n o ¢*/2, then the scale height can

be written as hg = ¢m/n which is proportional to g~!, just as in equation (1.10).

In order to relate Wy with gravity, they use the line profile for damping wings, i.e.
Lorentz’s profile, ignoring van der Waals broadening and just taking into account pressure
broadening to get the relation in equation (2.11). This is possible because the K minimum
feature is formed in the damping dominated part of the line profile, and it is known to
appear in the region of the temperature minimum where 7 ~ 2/3.

™ o< em* /W (2.11)

Taking this value for 7 and the result in equation (2.10), we can finally relate W, with
gravity as:

Wy oc g% (2.12)

On the same grounds, Avrett (1972) compared a solar model with a second one of
effective temperature similar to that of the Sun and log(g) = 2.0. Based on the thickness
of their chromospheres and optical depths at the region where the K line is formed, he
was able to conclude that the atmosphere with lower gravity is less dense but since it is
geometrically extended to a greater degree, the outer layers have greater optical depth.
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2. The Wilson-Bappu effect

This directly leads to a greater line emission width and the geometry produces greater
luminosity. But luminosity is related to gravity as L o« ¢!, hence, the width W, in-
creases with decreasing gravity. His model also resulted in quantitative agreement with
the width-luminosity relationship in equation (2.1) first observed by Wilson and Bappu
(1957).

The Mg II k line at 2796 A holds similar excitation conditions than those of the K
line, meaning that the relation between their line widths and other stellar parameters
is qualitatively equivalent to those of the K line. Hence, the WB effect is also valid for
the k line but since it is located in the ultra-violet regimen of the spectrum it cannot
be observed with ground based telescopes, making observations in these line rare and
harder to study than the K line. However, Kondo et al. (1972) used a balloon telescope to
perform spectroscopy of the Mg k line and showed their line widths are in average ~ 0.4
times wider than those of the Ca II K line and that the WBR is also followed.

As determined by Kraft et al. (1964) while studying the possibility of the use of the H,
line as luminosity indicator, a weaker but analogous correlation can also be seen in this
line among G and K type stars.
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The PHOENIX code

PHOENIX (Hauschildt and Baron, 1999) is a state-of-the-art stellar and planetary atmo-
sphere code that was designed as an extremely general code and which has been steadily
improved over two decades. It can calculate atmospheres and spectra of stars all across
the HRD like main sequence stars, giants, white dwarfs, stars with winds, TTauri stars,
novae, supernovae, brown dwarfs, AGN disks and extra solar giant planets (including
irradiation).

An example of a solar spectrum computed with PHOENIX is shown in figure 3.1. It
has T.s¢ = 5,780 K and solar metallicity.

SNIRIS was an early version of this code, which has been renamed and developed within
the theory group of the Hamburg Observatory. Since it suffered a lot of major changes, it
is said to have risen from the ashes instead of being a new version. And so, that is where
its name comes from. A general description of the latest version of the code can be found
in Baron et al. (2003).

Although some of its parts are written in C and C++ thus there is access to advance
and precise arithmetic libraries like QDA, PHOENIX is a parallelized Fortran 95 code. If
the implementation of parallel computing is wished, it is necessary to use MPI. Initially,
MPI ran on distributed memory architectures, but with the change of architectures in
computers, now can also run on shared memory architectures, where several processor
have access to a global memory, see figure 3.2. This allows data to move from the space
of one process to that of another, undertaking the parallel programing model.

Currently, PHOENIX is supported by several systems including LINUX and Mac 0S; it
is not and it will not be supported by any Microsoft Windows platform. Documentation,

features and brief manual of the code are available online to download.

In this chapter I will describe the methods implemented to solve the RTE, which is the
basis of PHOENIX, the most important parameters as far as this work concerns, and the
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general structure of the code.
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Figure 3.1.: Solar synthetic spectrum.

Figure 3.2.: Scheme of a shared memory architecture. Taken from computing.llnl.gov
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3.1. Equations and numerical method

Radiation makes the physical properties of an atmosphere, in fact of the entire star, be
measurable because the spectrum we see typifies them. But this radiation might change
if it passes through matter since more energy can be added or subtracted, phenomenons
known as emission and absorption, respectively (see A.1). This means radiation varies
with depth in the atmosphere, which makes it essential to model stellar atmospheres.
Furthermore, the spectrum of a star can be calculated from such model.

Hence, to model an atmosphere a solution of the radiative transfer problem must
be found, i.e., a known source function. PHOENIX does this by applying the short-
characteristic method (Olson and Kunasz, 1987) in which a two-level atom with complete
redistribution is considered and where the frequency independent line source function is
written as

S=(1—¢J+eB (3.1)

where € is the destruction probability, J is the mean intensity of a line and B is the
Planck function. A full derivation of (3.1) is given in A.2. J can also be expressed as AS,

where A is the lambda operator that can be represented as a matrix operator acting on
J.

An iteration method is now used to iterate lambda so we can approximate a source
function S™*! from the radiation field produced by S™:

S™H = (1 —€)AS" + €B (3.2)

The idea of this method is a repeated application of equation (3.2) to eventually reach
convergence to the correct solution, but it does not work for small values of e(e < 1).
¢ = 0 has as solution a grey atmosphere! but it also implies that J(7 = 0) < B because
if 7 < 1/¢ (being 1/e the thermalization depth) a photon has a chance to escape through
the surface, causing J < B.

To ensure thermalization, photons have to be scattered 1/e times, traveling a large
optical distance without being destructed. This means they will couple different regions
of the atmosphere.

Due to the problem described above, to solve the radiative transfer equation for all
wavelength points, the OSI method is used, which is the most commonly used. This
method uses spherical symmetry for 1D given by layers or shells and parallel geometry
when selected; spherical geometry is useful for extended photospheres, like in giant stars.

L Approximation in which the absorption coefficient does not depend on frequency.
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To quantify the number of ionized atoms, the Saha equation is included in PHOENIX
for more than 3,900 NLTE electronic energy levels and 47,000 atomic transitions (primary
lines).

The elements included, along with their respective more important ionization stages, in
the EOS used in PHOENIX are H, He, Li, Be B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, ClI,
Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Kr, Rb, Sr, Y, Zr, Nb, Ba, and La
(Allard and Hauschildt, 1995). Dust grains and molecules can be incorporated, but they
are only used in this work to model the photospheric emissions and not the chromospheric
part due to their high temperatures. Around 300 molecules are included in every model.

More information about the Saha equation and the EOS can be found in A.3.

In addition, the iterative method allows temperature corrections to achieve energy
conservation in the equations, as well as radiative and hydrostatic equilibrium.

3.2. Parameters

The most important input parameters for us are those who define the structure of the
star and, therefore, the shape of its spectrum. PHOENIX needs at least three of them,
which are effective temperature (7.s7), a value of surface gravity (log(g)) and mass or
luminosity. As an alternative, the radius can also be used. If more than three parameters
are given in the scheduler script (see §3.3), all of them have to go in accordance; otherwise,
only those most important will be taken into account for the model, but T, is always a
must.
These and other relevant control parameters are describe below.

e cmtdis Array containing the step size between points in A. The points are divided
in 6 section from 10 to 107 A, each of one can have its own cmtdis.

e inlte Integer variable. Set to 0 for LTE calculations or to 1 for NLTE calculations.
When inlte= 1, the wanted species must be additionally selected.

e logg Logarithm of the surface gravity value in cgs units.
e mass Mass in solar masses.

e n Exponent of the power law density profile given by p(r) = po(r \ Ro)™; n is an
integer. Other density profiles like exponential or arbitrary are also available.

e teff Effective temperature of the star in Kelvins.

z Scaling factor for metal abundances describe by log,,(z) = [(Fe/H)/(Fe/H)a).
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As stated before, T, s is one of the most important parameters while modeling a pho-
tosphere owing to the fact that it will determine the intensity of emitted radiation, and
hence the shape of the spectrum including its maximum emission peak. The latter is
established by the Wien’s law:

MpearTefp = 2.89810°m - K (3.3)

where Apeqr is the wavelength at which the spectrum has its maximum emission in me-
ters. As a consequence, shapes of synthetic spectrum will be regulated by the so-called
parameter (see figure 1.2) and must not be overlooked. Furthermore, the appropriate
selection of spectral types is also dependent of it.

On the other hand, surface gravity is in charge of the internal structure of stars. In
PHOENIX, there is a model for dwarf’s atmospheres where plane parallel geometry is
assumed and gravity is the same for all radial points. But since giant stars have an ex-
tended atmosphere, this is not be suitable for them and so an alternative is a second
model for stellar atmospheres specially used for this type of stars, which uses spherical
radiative transfer and where gravity does not remain constant but changes with radius
instead. Therefore, the choice of the right model mostly lies in the value of surface gravity.

For stars with reasonably high surface gravities (log(g) > 3.0), the atmospheres have a
relative extension of less than 1% and they can be handled with plane parallel approxima-
tion (Allard and Hauschildt, 1995). Nonetheless, in this work I have limited all models to
spherical symmetry, which is translated as an atmosphere constituted by layers or shells.
Each of such layers is required to follow the equations mentioned in §3.1 and continuity
between them is also a must. The effect of gravity is also visible in spectra since a line
will be more pressure broadened if surface gravity is larger.

Of course, an entire stellar interior is only completely elucidated when all of the quan-
tities involved are taken into account. These quantities are density, gravity, temperature,
gas pressure, mass, and luminosity. They constitute the equations of stellar structure
which are not be explained here because they are not of fundamental matter to this work.

3.3. Program files

PHOENIX is a considerably large program so it is structured in modules or units that
contain different independent subroutines. They can be computed at the same time and
when the computations are done, all the information is put together. This characteristic
makes possible a parallel computing.

These procedures are written in the main code named phoenix. f, which is the “driver”
program and consists of almost 25,000 lines describing the entire code.
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Besides the main program, there are other program files including the input parameters
(see §3.2), ionization potentials, routines with methods to obtain line opacities, for RT
and NLTE calculations as well as for atoms and molecules.

In fact, molecular line data is one of the most significative differences and improvements
of the code. This was possible with the addition of HITRAN92 database, which back in
the time included line parameters for 31 species and 709,000 transitions (Rothman et al.,
1992).

The atomic line list, taken from Kurucz and Bell (1995), also plays an important role
in this code since it is crucial for the correct interpretation of emission lines. It contains
information of 80 million lines that are been used to compute the absorption and emission
from spectral lines of ~ 60 species. They are being distributed by R. Kurucz on DVD
format to modelers and the newer version is available online.

As its name says it, the scheduler script in PHOENIX is in charge of arranging the jobs
within the main program. The principal tasks are (1) reading and writing of the input
and output files (or units), respectively, and (2) describe the parameters that define the
model. All stellar? parameters, temperature corrections details and the set of atomic LTE
and NLTE species to be included, are listed here.

Input files are always units containing the structure (optical depth, electronic temper-
ature, column mass density, gas and electronic pressure, radius, etc.) of a previously well
converged photosphere with similar parameters of that to be computed. If surface gravity,
effective temperature, or mass are too different, the computation of the model will need a
larger number of iterations before it reaches convergence. These differences are considered
to be large when Alog(g) > 1.0, and AT,;; > 1,000 K; if they are small, an amount of
10 to 30 iterations is enough to reach convergence.

Output units are of the same structure of the latter but they contain the structure of
the new model. In addition, a second very important output unit gives the surface flux
as a function of wavelength.

Every iteration consists in the reading of the input structure and finalizes with a tem-
perature correction. This is how a final synthetic spectrum is gotten, but in between a lot
of steps must be done. First of all, the hydrostatic equation is integrated (here, radiation
pressure is ignored for simplicity at the very first iteration because it is unknown), making
sure that the equation of state remains valid in each layer of the atmosphere. Then the
radiative flux (F,,q) is computed also for each layer and the radiative transfer equation is
solved for every wavelength point.

At this point, if NLTE is going to be considered, the rate equations (including the

2This is, of course, for the stellar atmosphere case. Otherwise, the parameters have to be those of a
rapidly expanding atmosphere or a planetary one.
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Boltzmann and Saha equations, see appendix A.3) have to be solved. The OSI method
is used to solve them.

Ftot == Frad + Fcom) = O—Tfff (34)

After this, we might find that F.q is not equal to anf s even when the convective flux
(Feony) is ignored (see equation (3.4)). If this is the case, the temperature for each layer
has to be corrected trying to get a better convergence, so a new iteration begins with the
modified temperature values, which are determined by energy conservation. Essentially,
this is repeated until the model has converged or until a specific number of iterations has
been reached.

3.4. Photospheric models

Well-tested, accurate photospheric PHOENIX models already exist for cool giants, but
these artificially end in the temperature minimum. Hence, all weak and medium pho-
tospheric lines are matched excellently. These models encompass the coolest known M
dwarf, M subdwarfs and brown dwarf candidates having a wide range of parameters:
5,000 K< Tepp <4,000 K, 3.5 < log(g) < 5.5 and —4.0 < [M/H] < 40.5 (Hauschildt
et al., 1996).

But emission from the chromospheres, as observed in the very strongest lines such as
Ca II K, caused by the outwardly increasing temperature in the chromospheric layers,
has so far been left unconsidered. Due to the fundamental nature of this problem, no
quantitative chromospheric models exist so far, neither has the Wilson-Bappu effect (§2)
been reproduced to fully match the observational evidence.
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Method and results

The current chapter is dedicated to describe the methodology of this work, and is not
planned to be a PHOENIX user’s manual, but it will remark crucial details to take into
account while modeling chromospheres. The technical findings of such practice will also
be related not as formal results whereas as warnings and guidance for future users in view
of the fact that no chromospheric models for low gravity stars exist so far.

This chromospheric mode included in PHOENIX (Fuhrmeister et al., 2005) has been
successfully applied in modeling of M dwarf chromospheres (Hauschildt et al., 1996).

4.1. How to compute a PHOENIX chromosphere

To compute a chromosphere with the code package PHOENIX, an executable scheduler
script of PHOENIX and an executable of make_chromos, which will contain the informa-
tion about the structure of the chromosphere are needed. make_chromos.f is a program
file that includes an input file named chromos.dat which needs, in turn, a file containing
the structure of a photosphere as input, and has a different file as output. The latter
will hold not only photospheric data but also those of a chromosphere attached to this
particular photosphere.

The input file for chromos.dat must be a model produced by a converged and well
behaved photospheric simulation; information of how to get this is given in §3.4. It is
recomendable to make this simulation with the same desired parameters for the chromo-
sphere like effective temperature, mass, chemical composition, etc. Taking this precaution
will avoid a mismatching of both photospheric and chromospheric spectra, otherwise it
would be impossible to compare their continuum. A description of the parameters that
can cause a significative change in the spectrum with an attached chromosphere will be
held in this chapter.

In order to obtain an output file from chromos.dat, and hence the structure of the
chromosphere, first it is necessary to compile the program file make_chromos.f — this is
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done within the PHOENIX’s BIN folder, where the binary or executable files are located.
The output file will carry information that describes the structure of the chromosphere, the
aforesaid information is included as variables like the initial temperature value (minimum
temperature), the maximum temperature value located at the top of the chromosphere,
its turbulent velocity (Vi,,), column mass density, etc.; they are broken down below in
table 4.1.

Parameter Used values Units
Temperature at top of the chromosphere 8 x 10 - 10* K
Temperature at top of the atmosphere 20,000 K
Turbulent velocity in the photosphere 2.0 km /s
Turbulent velocity at top of the chromosphere 10.0 km/s
Column mass at temperature minimum (log scale) -2.5 gr/cm?
Column mass at top of the chromosphere (log scale)  -6.5 —-7.0 gr/cm?
Outer pressure in transition region 10~* dyn/cm™?

Table 4.1.: Parameters for the structure of the chromosphere in solar type star models.

The temperature at the top of the chromosphere was set to 8,000 K by Ayres (1979),
although a few years early Vernazza et al. (1973) used 8,500 K in their model, saying this
value is still lower than the corresponding temperatures, and they used 20,000 K for the
top of the chromosphere. Turbulent velocities in the photospheric region of 1 — 2 km/s
have been previously used with satisfactory results (Maltby et al., 1986; Houdebine et al.,
1995). The turbulent velocity along the chromosphere in PHOENIX is given by a linear
function starting at the Vj,, in the photosphere and ending with the chosen value for
turbulent velocity at the top of the chromosphere (V7). This value has been proposed
to be 8.5 km/s when T.¢; = 8,000 K in a VAL model made by Maltby et al. (1986).
After the chromosphere region, a second linear temperature rise is applied to form the

TR, which is considered to be the top of the atmosphere.

As with turbulent velocities, the temperature along the chromosphere is given by a
linear rise but it is a function of column mass that goes like 7" = 7.5log(cm), where
cm is defined as in (1.14) and z denotes increasing distance in the inwards direction. In
the upper layers of the photosphere, column mass was set to log(em) = —2.5, while in
the outer zones of the chromosphere it was chosen to go in agreement with hydrostatic
formulation such that

log (pout) = log (g) + log (cmyep) (4.1)
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For a fixed arbitrary value of log(p,u.:) = —4. Hence, for surface gravities ranging
between 2.5 and 5.0, cmy,, varies from -9 to -6.5 in a logarithm scale. Nonetheless,
in most of the cases this was restricted to -7 in order to keep a reasonably extension
of the chromospheres and their densities high enough to produce emission lines. It is
important to note that varying the computed values of equation (4.1) too much can lead
to inconsistencies in the hydrostatic equations of the code and models may not carry on.

After having chosen all these data, they have to be used as an input file for the sched-
uler script containing the option ichrom2=t. Such option activates the chromospheric
mode incorporated in PHOENIX. There is also an alternative function ichrom=t for the
chromospheric mode but it will no be describe here. In addition, the parameter chvtb_fac
is highly recommended to avoid the chromosphere’s turbulent velocity (V) surpass the
sound velocity (Vs): when computing a chromosphere, an increase of turbulent velocity
will be impose and it might be higher than the sound velocity. Using chvtb_fac will set
the value of V;,, to a fraction of Vs all along the chromosphere.

Once all of the above has been done, our final output will include both photospheric and
chromospheric emissions. Note that if non-LTE is activated, only the specified species
will appear in the spectrum and those which are of much interest must be previously
selected.

A step by step instructive for the computation of a chromosphere is given below:

1. Get an output file from a scheduler script that does not include the function
ichrom2=t. It will contain only a structure of the photosphere.

2. Use such file as input for chromos.dat, which must contain the desired chromospheric
parameters.

3. Compile make_chromos.f within the compiler folder contained in BIN.

4. Copy make_chromos to the location of the needed files and run it. The output file
of chromos.dat, containing the chromosphere’s structure, should now appear in the
same location.

5. Specify this new file as the input file for the scheduler script that includes the
function ichrom2=t and run it.

6. The final result is a spectrum of the photosphere with a chromosphere incorporated
in a semi-empirical way.

Please note and bear in mind that chromospheric parameters for low gravity stars are
not obvious and they do not have been previously defined by any other work. Vernazza
et al. (1973) proposed values for temperatures at the bottom and at the top of the chro-
mosphere, as well as the respective column mass values for a solar model. Although they
achieved a well accepted model, such parameters were only chosen with the goal of being
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able to match observations (when available), reproduce a well behaved TR and produce
prominent Ly, lines and, therefore, some arbitrarily data points lack physical meaning.

4.2. Making models

Calculating a good chromospheric model depends on the adjustment of several parame-
ters, besides of having a previously well converged photospheric model to work with. Such
parameters define the whole structure of the chromosphere. Those that are of interest for
us are the temperature at top of the chromosphere (T3,,) in K, the column mass density
(em) in gr/em? and Vi, in km/s at the bottom and at the top of the chromosphere.

Initiating with a converged solar model, eleven models of chromospheric emission were
calculated; they are listed in table 4.2. All of them have the same values of V,,,=10 at
top and V4, =2 at bottom, but different 7},, and cm at the bottom of the chromosphere.
These models deem as a first test to check whether the mentioned parameters affect the
core of the Call K line noticeably.

All computations have been made with the NLTE mode for the species H I, He I, He
II, Ca I and Ca II, with T, =5,780 K and M = 1M ©®. Gravity values are log(g) = 4.4
for models described within this section but they vary in §4.4.

No. Ty, log(em)

0 8000 -25
1 6500 -2.5
2 5000 -25
3 9500 -25
4 11,000 -2.5
5 8,000  -4.0
6 8,000 45
7 8000  -1.0
8 8000 405
9 8000  -2.0
10 8,000  -3.0

Table 4.2.: Parameters for the first chromospheric models.

The first models shown that the best temperature 7},, must be around 10,000 K, where
hydrogen absorption is maximized, and that log(cm) = —2.5 builds a better shape of the
Ca II K line core, i.e., emission is measurable and wings are not so prominent. In figure
4.1(a), the differences produced by temperature changes with same log(cm) are shown,
and those produced by column mass density with same T},, are in figure 4.1(b).
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The changes of the maximum temperature at the top of the chromosphere indicate that
increasing this parameter will produce more emission of the Ca II K line. Similarly but
with a stronger effect due to the logarithmic scale, a higher value of column mass at the
bottom of the chromosphere where the K line is formed, is reflected in stronger emission
of this line.

Now what remains to be explored is if the chosen turbulent velocities can actually make
a difference in the outcomes of the models. With such objective, three more spectra of
different Vj,, were obtained. Their parameters are shown in table 4.3.

Jevremovic et al. (2000), while modeling atmospheres of dwarf stars, found a decrease
in electron density with turbulent velocity. Since the Ca II K line formation process occurs
in the region of temperature reversal, whose structure is determined by the parameters
at the bottom of the chromosphere, the values of V;,, at the bottom of the chromosphere

(Vbottom) wwere not changed to avoid excessive contribution to such line.

No. Ty, log(em) Vi, at bottom V,, at top

11 10,000 -2.5 2 8
12 10,000 -2.5 2 7
13 10,000 -2.5 2 6

Table 4.3.: Parameters for models with different turbulent velocities.

Models 11 to 13 did not present any visible change in their spectra. This can be
attributed to the lack of importance of the higher layers of the chromosphere when it
is about calcium emission, i.e., the Ca II emission is produced within the bottom of
the chromosphere. Therefore, changing the upper turbulent velocity does not affect the
bottom enough to be perceived in such line.

4.3. Smoothing temperature profiles

In figure 4.2 the temperature profile corresponding to model #11 is plotted. There, one
can clearly see the beginning of the chromosphere at the temperature minimum. From left
to right, the abscissa indicates the beginning of the photosphere, where the temperature
starts to drop until it reaches a minimum value. After this point and up to the selected
maximum 7},,, the values correspond to the chromosphere’s profile. But this function
looses continuity at that precise point, which means both curves (from the photosphere
and from the chromosphere) are joined but not in a smooth way.
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Figure 4.1.: Effects of temperature at the top and c¢m at the bottom of the chromosphere for
solar models.
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Figure 4.2.: Temperature profile of a solar model.

Physically, this is not what we are expecting, since the photospheric region must be in
equilibrium with the chromosphere. This situation can lead to undesirable features in the
core of the Ca II K line, such as a very deep core or no signs of emission. To avoid this
problem, one must manually change some temperature values of the region surrounding
the minimum point and make a smooth curve. Manual changes in temperature can also
be helpful when 7,,,;, is not high enough to produce the desired output. Three spectrum
have been made to fix this issue. The complete profiles are included in appendix B.1 and
the description of the corrections are as follows:

1. Flat Valley There were nine points in the profile with temperature lower than 4,000
K. Their values were arbitrarily increased and set to 4,000 K. With this correction
the intensity of the Ca II K line gets smaller, narrower, and the core does not seem
to be affected, but still the temperature profile has non-smooth zones.

2. Symmetric Correction The same nine points were modified but in a symmetrical
manner. The fifth point was set to 3,860 K, those at the edges at 4,000 K, and the
remaining were set 35 K apart each. Although a symmetric distribution ameliorates
the problem, it is not the best way to do it because going from the minimum point
to the photosphere and to the chromosphere does not follow the same function.
Imposing this causes the temperature profile to look unnatural.

3. Smooth Curve A more accurate profile was found when symmetry is not consid-
erate and a smooth curve is searched instead. The chosen values of temperature are
listed below from left to right.

47



4. Method and results

All of these corrections along with the original curve are shown in figures 4.3 and 4.4; they
display temperature profiles and Ca II K lines, respectively. The photospheric parame-
ters of these models correspond to the inactive Sun, i.e., a Sun with no magnetic activity.
Similarly, since the structure of their chromosphere has been chosen to match their pho-
tosphere, they represent a Solar one. This entail complete non-active Solar models, which

This selection of values makes the line emission core to be less deep in the very
center and also produces a narrower line, which we are looking for. In addition, the

4.000 3.965 3.930
3.930 3.945 3.962
3.980 4.000 4.015

emission in the wings increases leading to a better define width of line.

are to be compared with observational data in further work.
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Figure 4.4.: Ca II K for solar models with temperature corrections.

4.4. Changing surface gravity

To compute the chromosphere models for different values of gravity, the same method
established in §4.1 has to be applied. But first of all, converged photosphere models are
needed. Since we are aiming for them to have different values of gravities, the whole
structure of each synthetic star will be different. This is true because hydrodynamic equi-
librium is a must for stellar structures, making surface gravity one of the most important
parameters for modeling stars.

Hence, if we compare two stars of equal T¢s; but different surface gravities, their struc-
ture will differ more than in the opposite case (same surface gravity but different T, ;).
This entail a problem when computing such spectra: since the PHOENIX code requires
a previously converged model to start a new model with another set of parameters, the
convergence and well behavior of the results can depend on the right choice of the param-
eters of the input file.

For this reason, a big change in gravity between models may not be suitable to compute
them one after another. To avoid significative changes in the structure of each model, I
have started with a solar model whose logarithm of surface gravity is log(g) = 4.4 and then
used it as input for the next ones making steps of only Alog(g) = 0.1. This procedure
was repeated until log(g) = 2.5 was reached, being all of them LTE models.
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Nonetheless, with the latest version of PHOENIX, one should be able to make new
photospheric models with changes of about Alog(g) = 0.5 without convergence problems
due to improvements in the equation of state.

Five out of these models were selected to be used as input for NLTE models keeping all
other parameters the same. The chosen ones were those with log(g) = 4.4, 4.0, 3.5, 3.0, and
2.5. A sixth one for log(g) = 5.0 was gotten to extend the data for gravities above the solar
value. Then the NLTE models for different gravities served as bases for chromospheric
models. Maximum temperature in the chromospheric region was the only parameter
(besides gravity) that has been changed in each model, they were set to 10,000 K for
log(g) = 5.0 and 4.4, 9,000 K for log(g) = 4.0 and 3.5 and 8,500 K for log(g) = 3.0 and
2.5.

The reason for such thing is high temperatures at the outer layers of low gravity stars
do not work because radiation pressure overtakes gravity. Output spectra are shown in
figure 4.5, where the differences in flux around the Ca II K line due to the changes in
gravity can be seeing.

4.0

3930 3932 3934 3936 3938 3940
Wavelength(A)

Figure 4.5.: Ca II K line for different gravities.

To get measurable K lines in these models, some changes in their temperature profiles
were made. Different values of column mass density were also applied. Such parameters
vary from 3,800 K < Ty < 4,200 K, 8,500 K < Ty, < 10,000 K, and 5.7 <
log(em)pottom < —7.0. Physical parameters of the best results among them are listed in
table 4.4 and the corresponding emission lines are shown in figure 4.6.
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This models only include surface gravities from log(g) = 5.0 to log(g) = 3.5, for the
two remaining models, measurable emission could not be obtain by the method described
in this chapter and the alternatives will be discussed in §5.

log(g) Tiep (K) log(cmuy) (gr-/cm?) pou (dyn/cm?) R (cm)

5.0 10,000 -7.0 1074 3.65 x 10'°
4.4 10,000 -7.0 1074 7.31 x 10%°
4.0 9,000 -6.6 1074 1.16 x 10"
3.5 9,000 -7.0 10~ 2.08 x 10!

Table 4.4.: Physical parameters for the best chromosphere models, presenting emission of K
line, for different values of surface gravity.
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Figure 4.6.: Spectra of the best chromosphere models, presenting emission of K line, for dif-
ferent values of surface gravity. The specified values on the right top corner correspond to the
respective values of log(g).
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5.1. Structure of the models

Figures 5.1, 5.2, and 5.3 display the structures of the models for chromospheres with
Ters = 5,800 K and different surface gravity. The first one shows the logarithm of column
mass density in g - cm™2, the second is for the gas pressure (Pyus) in dyn - em™2, and the
third one illustrates the electron pressure (P,) in same units. All of them are plotted
against the electron temperature (7,) given in Kelvins.

The changes in extension of column mass between the different chromosphere mod-
els (figure 5.1) are not significative because (1) they were chosen to be consistent with
each others, and because (2) densities are so low in the chromospheres (log(cm) ~ 107%)
that the small changes are not significant in comparison with those within the respective
photospheres. Nonetheless, cm photospheric values present variations consistent with the
surface gravity of the models; these values go from a maximum of 9.08 g - em~2 for the
model with log(g) = 5.0 to 17.28 g - em~2 for log(g) = 3.5.

The synthetic spectral energy distributions (SED’s) of the models are illustrated in
figure 5.4. The wavelengths have units of A and the values of flux correspond to a loga-
rithmic scale, the flux units are erg/cm?/s/cm. As seen in this figure, the usage of LTE
atomic lines in the model together with NLTE hydrogen lines causes the hydrogen contin-
uum in the blue, at around 900 A, to have strong emission lines. Such lines can pump the
hydrogen unrealistically towards redder zones of the spectra, spoiling some other NLTE
lines like H and K through electron pressure.

A possible solution to this problem is to eliminate all LTE lines off the models, keeping
only the selected NLTE species. This will produce rather flat spectrum with only a few
lines on them. When this procedure was followed, no difference in the shape or intensity
of the K emission lines was observed. Therefore, the original models (with LTE and NLTE
atomic lines) were kept.
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In figure 5.5, the temperature profiles of the four models are shown. Temperatures are
given in Kelvins and radii in ¢m, except for the solar model, where the temperature is a
function of height. Here, height is given in kilometers measured above a zero point were
Ts000 = 1, this to be consistent with the model of Vernazza et al. (1973) in figure 1.3.

Their model has a temperature minimum of 4,100 K located at 520 km, while in this
work I use a minimum of 3,930 K at 830 km. Between 1,000 and 2,000 km, they have
adopted arbitrary values of the temperature, making it rise up to 6,000 K; in contrast,
this region in the model of figure 5.5(b) corresponds to the central region of the modeled
chromosphere with PHOENIX. After 2,200 £m and 8,500 K, they put a second sharp
increase of temperature to model the transition region, point that is very close to the end
of the chromosphere in this model at 2,342 km and which does not include a transition
region. Although the difference in temperature for this point ending the chromosphere
with this work is of 1,500 K, Vernazza et al. (1973) claimed they used a lower temperature
than the corresponding to compensate the high-temperature plateau at 2,400 km.

5.2. Measurement of the lines

The principal aim of the investigation was to see how the emission line widths of the
Ca II K line behave as a function of surface gravity in chromospheric models of inactive
stars. Different values of surface gravity were selected to compute the models, whose
K lines were then analyzed individually. This selection of parameters represents an ad-
vantage in the analysis because spectral type and effective temperatures can be controlled.

All the chromospheric models were computed with the same version of PHOENIX
(16.05.00D) released on May 22nd, 2013, and with the same OS. This detail may not
seem very relevant but it is important to maintain concordance between computations
due to changes and improvements of the code that manage different ways of solving the
EOS. Also, it has been noticed that models of same structures and parameters can lead
to small differences in spectra when computed by different operating systems. Hence,
taking this precaution will avoid unwanted differences in the shape of the chromospheric
emission lines proper of computational aspects.

Along the same line (Ca II K), the measurements of the K emission line widths were
finished before any relation was calculated in order to avoid subconscious bias. Results of
the measurements are listed in table 5.1. This methodology was made by two individuals
separately, obtaining the same result.
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Figure 5.1.: Structure of the best models for different gravity. c¢m is the logarithm of column
mass density, which is given in units of ¢ - cm™2 and the temperature is the electron temper-
ature in Kelvins. From left to right, the points correspond to the chromospheres towards the
photospheres. All models have T, ;¢ =5,800 K.
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dyn - cm~2 and the temperature is the electron temperature in Kelvins. From left to right, the
points correspond to the chromospheres towards the photosphere. All models have T¢¢; =5,800
K.
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Figure 5.4.: SED’s of the best models with different surface gravity. All models have
Tepr =5,800 K, M = Mg and solar chemical composition. The presence of strong emission
lines in the hydrogen continuum around 1,000 A is due to LTE atomic lines in addition of the
NLTE hydrogen lines.
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Figure 5.5.: Temperature profiles of the best models with different surface gravity. All models
have Tery =5,800 K, M = Mg and solar chemical composition. Temperature is given in Kelvins
and radii in c¢m except for the solar model, where the temperature is shown as a function of
height. Height is given in kilometers measured above a zero point were 75900 = 1.
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5. Discussion and conclusions

log(g) Wo
5.0 0.35
4.4 0.43
4.0 0.51
3.5 0.55

Table 5.1.: Measured line widths of the Ca II K emission line for models of different surface
gravities. The widths are given in A.

One manner to do this was to plot of the lines in the same scale to compare them with
each other and get the logarithm of the ratio of the widths. Once this was done, the
difference in surface gravity were related in the following way:

log (W, /W,) = A
and

log(ga) — log(gs) = B

A/B
— Wap o ga’l/,

(5.1)

where a and b indicate two different modes, and W, ; is the ratio of the line widths of
such models.

The second approach was to measure the line widths directly from each model: sub-
tracting the minimums where the wings of the line begins to the maximum points and
dividing by two gives us the values of flux whose wavelengths difference is the equiva-
lent width. This was achieved with a small simple routine written in python but some
ambiguities in the obtained values were observed. The main problem of this is that the
region where a wing starts is not a well define point, but rather a group a points with
very similar fluxes, making hard to select a single value to be the real minimum point.

5.3. Solar model

Testing models always requires the comparison with observational data. If both match,
then one can trust the model even more. In this work, the K line for the solar model is
to be compared with observations of a moderately active Sun in in 2014 (S=0.17) made
with the TIGRE (Telescopio Internacional de Guanajuato Robdtico-Espectrocopico, for-
merly Hamburg Robotic Telescope) and its HEROS (Heidelberg Extended Range Optical
Spectrograph.) spectrograph (R=20,000 resolution).
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5. Discussion and conclusions

But since all spectral lines, including photospheric absorption lines and chromospheric
emission lines, are subjected to an extra broadening (besides pressure broadening) caused
by the instruments, any model has to be convoluted with the Gaussian instrumental
profile (IP) of the spectrograph that was used to get the observational data. Doppler
broadening also affects the line widths, but the solar velocities of around ~ 2 km/s are
not significative enough to be taken into account here.

The Gaussian function is describe as

1

oV 21

G(:L‘) = X e_(x_,“)z/(QUQ) (52)

where o is the standard deviation and p is the mean. The TIGRE’s spectrograph pro-
duces a broadening of about 0.2 A, which is represented as G(\) = e~ (A=0*/* g where
b = 3934.78 A is the center of the K line core, ¢ = 0.15 A is half the total width of the

function, and a = l/c\ﬂ27r) is its total height.

Figure 5.6 illustrates the original solar model in the K line region (5.6(a)), the observa-
tional data (5.6(b)) of the solar Ca II K line core at its basal flux level in 2009 (S=0.15,
Schroder et al. (2012)) and at an only moderately active level in 2014 (S=0.17) taken
with the TIGRE, and the final convoluted synthetic spectra of this line with a Gaussian
function for the TIGRE’s HEROS spectrograph (5.6(c)) along with the 2014 data.

In the latter, it can be seen that the solar model includes as much emission as the basal
flux shown by the Sun. Although the model still presents a stronger absorption core, this
could only mean that the top of the chromosphere has a little too much column mass. But
the temperature minimum is not affected by it because, as established before, the emis-
sion is produced at the bottom of the chromosphere and the absorption line outside the
emission is caused by photospheric effects. Hence, the deepness of the core is not relevant.

5.4. Conclusions

Using the PHOENIX code, I have computed models with solar effective temperature and
different surface gravity in order to see, if these would reproduce the Wilson-Bappu effect.
This version of PHOENIX includes a chromospheric mode in hydrostatic equilibrium, with
the same essential physics as summarized above, and which therefore simply scales with
surface gravity (cm oc g~'/2,n o< g'/?). However, a practical problem occurs since shallow
basal flux emission is too smeared out at already log(g) = 3.5 (see figure 4.6). Conse-
quently, T needed to make the bottom of the chromosphere (just above the temperature
minimum) a little warmer to mimic the emission of modestly active stars, which in fact
represent the stars observed for the WBE. But the equilibrium conditions allow only for

61



5. Discussion and conclusions

30lel4 0.35F ‘ ‘ ‘ ‘ 3
’ ) ) ) ) E Inactive sun, Apr. 6th 2009 b
L Active sun, May 6th 2014
0.30F
2.5¢ L
il
~ x 0.25F)
gzo— = Ebop
=" © 0.20f
o 9 :
S st S 015
e g o
H S 5ok
gyl 0.10F
0.05F E
0.5+ B L ]
0.00 b, I i I I I I i
305 EE) 5 5% 5% 3940 3930 3931 3932 3933 3934 3935 3936 3937
Wawelength(A) Wavelength [A]
(a) Ca II K emission line of the PHOENIX solar (b) Observational data of the solar Ca II K line core
model (log(g) = 4.4). at its basal flux (black) and at a moderately active

level (red).

Fluz (arb. units)

—  Convoluted model ||
—  Observational data

1 2 3 7 5 < -
Wavelength (A) +3.931e3

(¢) Ca II K line core convoluted with a Gaussian in-
strumental profile of the TIGRE’s spectrograph, and
same observational data for the Sun at a moderately
active level as in 5.6(b).

Figure 5.6.: Instrumental profile correction for the solar model in the Ca II K line region.

The HEROS spectrograph of the TIGRE causes a broadening of about 0.2 A, which levels the
computed emission core of the solar model to the observational evidence.
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5. Discussion and conclusions

a small margin on this.

I do not adjust any other parameter than surface gravity to obtain the emission line
profiles, i.e., keeping turbulence velocities alike. Hence, these are produced from first prin-
ciples and so represent a good test of the WBE explanation given by Ayres et al. (1975)
nearly 40 years ago. As a result, the line widths reproduce the observed WBE gravity
dependence with an exponent of -0.17 (rather than -0.25) very well and in absolute terms.

The employed method in this work for the computation of chromospheric models in-
cludes the approach of keeping mass, effective temperature, and metallicity the same for
all models. The intention of the latter was to avoid unwanted effects in the line widths
of the Ca II K emission line that may be produced by changes in such parameters. Even
though this ensures us that increase of line widths are due to changes in gravity, the tech-
nique does not allow us to use a great range in values of surface gravity because effective
temperatures become too large for smaller gravities.

This was the case of the models with log(g) = 2.5 and log(g) = 2.0, where no emission
of the K line was observed but small modifications in the temperature profile and the col-
umn mass (trying to get emission peaks) were not possible because the models were too
instable by themselves to be recomputed with new parameters. An alternative to make
this work is to compute photospheric models more consistent with low gravity stars, ad-
justing T¢ss, mass and radii, and to build the chromospheres from them, obtaining more
stable full models.

In this work I present the first sample of chromospheric models to demonstrate the
WBR over a range of surface gravity to date. The models show that for at least the range
of surface gravity 3.5 < log(g) < 5.0 the WBR is linear and behaves like

WO o 9—0.17:|:0.02 (53>

Equation (5.3) seems to be well calibrated in comparison with previous studies (Wilson,
1967; Reimers, 1973; Pace et al., 2003; Park et al., 2013). It was obtained from the first
three rows in table 5.2, which shows the different relations of the line widths with surface
gravity when the models for log(g) = 5.0, 4.4, and 4.0 are compared with each other. The
error has been found statistically from the different measurements.

The following three rows correspond to the comparison made of the log(g) = 3.5 model
with the rest of them. As can been seen, the difference in the third column increases
when this model is used. Actually, the power of g decreases for models with lower surface
gravity and hence, gets far away from the previously reported value of —0.17 by Park
et al. (2013). The main reason for this to happen and to not use this model to get the
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relation (5.3), is that the models lose consistency as surface gravity gets lower because
the rest of the parameters (effective temperature, turbulence velocity, mass, etc.) were
not selected to match such values of gravity and hence, they are not very reliable.

Model a Model b Power of g

5.0 4.4 -0.15
5.0 4.0 -0.16
4.4 4.0 -0.18
3.5 2.0 -0.13
3.5 4.4 -0.12
3.5 4.0 -0.07

Table 5.2.: Wy relation with gravity as measured from the models. Each row gives the power
of g in the relation (5.3) when the listed a and b models are compared with each other.

It is observed that both the photosphere and chromosphere of the models are more
extended in height by the same factor with decreasing gravity, as described by Avrett
(1972). At the temperature minimum, 7 also increases with decreasing gravity: for the
log(g) = 3.5 and log(g) = 5.0 models, the first has a 7 more than twice as the second one
(2.158 x 1073 and 1.098 x 1073, respectively). This increased thickness leads to a greater
width of the line because it originates above T,,;,. For greater thickness, the photosphere
can be seen farther out in the wings of a line, like explained in figure A.1.

In the solar case, which is used as a first test, the minimum temperature is found
(over height, single component) for a relatively inactive Sun to reach down to 3,930 K.
The respective PHOENIX model (log(g) = 4.4) matches width and typical flux of the
chromospheric Ca II emission of a nearly inactive Sun, as observed with the Hamburg
robotic telescope (see figure5.6(b)). For comparison, the quiet Sun model of Vernazza
et al. (1973) had a temperature minimum of 4,170 K (figure 1.3).

5.5. Future work

As mentioned in 5.4, the models with gravities lower than log(g) = 3.5 did not present
any emission of the Ca II K line. To continue this work and extend the Wj relation
with gravity to a greater range of gravities, more consistent photospheric models for low
gravity stars are needed.

First of all, to compute good photospheric models, the adequate stellar parameters must
be selected to (1) construct well behaved atmospheres and (2) to match the respective
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chromospheres that are to be constructed above them and which must present sufficient
emission of the Ca II K line to be measured.

The above will allow not only to measure K line widths, but to measure K line widths
that are consistent with low gravity stars and all of the parameter that determine their
photospheric and chromospheric structure. Hence, the results of the corresponding WBE
in terms of surface gravity will be even more accurate and reliable than the one presented
here.

Furthermore and to keep testing the reproducibility of the WBE, the line widths of
the Mg II k emission line of the same models will be also measured to see how do they
behave with changing gravity. As mentioned before (see §2.2), the k line is also expected
to quantitatively follow the WBE, although in a smaller degree than the K line.

Finally, as the solar model in the present work was compared with observational data,
the solar k line will also be adjusted to compare with solar observations in the UV regime
by moonlight!.

IThis data is already available.
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Equations for the method

A.1. Radiative transfer equation

Radiant energy conservation can be mathematically described by the equation of radia-
tive transfer. Its derivation for atmospheres adopting a plane parallel configuration!,
like PHOENIX does, can begin with the assumption of traveling radiation of intensity
L,(r,0,t).

Let us suppose this radiation goes through the length dr and cross section do in the
time dt but only in the frequency interval dv. If the direction of the intensity € is normal
to do and passes by a solid angle dw, then the emergent intensity will be different by an
amount of energy which is the absorbed and emitted energy within the volume element
previously describe. Therefore,

[I,(r+ Ar,0,t + At) — 1,(r,0,t)|dodwdvdt = [j,(r,0,t) — k,(r,0,t)1,(r,0,t)|dsdodwdrdt
(A1)

J» and K, are the emission and absorption coefficients, respectively. Now let s be the
length traveled by the ray, so At = As/c, ¢ being the speed of light, and we get

(A.2)

Iy(r + AT’?Q?t—'— At) _ ]V(T797t> _ <1 8],, n 8_[]/) p

c ot ' Os

For time independent transfer equation and combining equations (A.1) and (A.2):

oI,
0s

L Approximation in which all parameters depend on one direction.

(A.3)

jl/ - ’fz/Iu -
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When the geometry of the medium is divided into plane parallel layers and the angle
between the ray with its normal 2 is § = cos™ ' we finally can write (A.3) as

o1,
0z

Equation (A.4) is the RTE for plane parallel atmospheres.

T (A.4)

A.2. Source function

The line source function (.S,) is defined as the ratio of monochromatic emission coefficient
to monochromatic absorption coefficient due to line processes but it may also be written
as

S, = (1—e) /OOO ouJydv + €B,(T) (A.5)

where € is the destruction probability, ¢, is the line profile function, J, is the mean
specific intensity and B, (7T') is the Planck function.

The destruction probability (€) tells us wether photons are destroyed by thermal pro-
cesses or isotropically scattered without changing their frequency. This is reflected in
different layers of an atmosphere: for deep layers (towards the core), the thermal term
in equation (A.5) dominates because collisions are important. In that case LTE is valid
and S, = B,(T). On the other hand, when moving outwards through the atmosphere,
scattering is dominant because of the extended chromospheres lead to a larger mean free
path, until at some point we reach the region where photons are being lost from the star.

A - log(r)

A

Radius

Figure A.1l.: The figure shows the relation between the increase of the source function with
different zones of an absorption line and the radius of the atmosphere.

68



A. Equations for the method

This means the source function decreases outwards because temperatures drop and so
the Planck function (and hence J, because in this region S, = .J,), and optical depths
get smaller as well. Therefore, we get an absorption line from the outer layers of the
atmosphere while its wings are being formed in deeper layers than the line core; this is
illustrated in figure A.1.

A.3. Saha equation

To describe systems like molecules, atoms or electrons, it is essential to know the energies
of their quantum states. For a large number of particles, it is also necessary to include
the way they distribute themselves throughout the allowed anergy levels.

The well-known Maxwell-Boltzmann statistics equation (A.6) is useful to count the
number of atoms in a particular energy level and the abundances of different types of
atoms, for different excitation states but only in one particular ionization state. It gives
the fraction of atoms of a given sort (elements) which are in a certain level, in its simplest
form, it provides a ratio of the number of atoms in two particular levels.

N o1&, mes
~ — — g,e_ wT (A6)
Ni 91j21 ’

where N is the number of ions in ionization state 7, N{ is the number of ions in the
ground state of ionization state i, g¢ is the statistical weight of the ground state of ion-
ization state 7, gj- are the statistical weights of excited states j of ionization state i, Fi is
the energy of the ground state of ionization state i, £ are the energies of excites states
7 of ionization state ¢, and « is the Boltzmann’s constant.

To do the same for a following ionization state, let us say the state ¢ + 1, one has
to take into account not only the excitation states of the ion ¢ 4+ 1, but also of the free
electrons, whose energies and statistical weights are determined by E, = P?/2m, and
ge(P.) = %niellﬂPf, respectively; P, is the momentum, m, is the electron mass, n, is the
number density of free electrons, and h is the Planck’s constant. This leads to

Nig1  ZH' 2

- = 2wmerT)>? e xi/T AT
Ni Zi no 2TmerT) e (A.7)
. BB
with Z' := 3222, gje” ~+7 . Equation (A.7) is called the Saha equation, which gives the

relative number of atoms of a given species that are in two ionization states in thermal
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equilibrium as a function of electron density and temperature.
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Temperature profiles

B.1. Corrections to chromospheres

The corrected temperature profiles for solar models are listed below. They include tem-
perature T in Kelvins, radius R in centimeters and column mass cm in gr/cm? values.
Each one of them consists in 64 points corresponding to the layers that constitute the

photospheres.
T(10%) (K) R(10") (cm) cm (gr/cm?)
1 2 3

20.000 20.000 20.000 7.3064 1.7268e-06
1.0000 10.000 10.000 7.2965 1.7268e-05
9.7061 9.7061 9.7061 7.2951 2.2104e-05
9.3531 9.3531 9.3531 7.2935 2.9739e-05
8.9560 8.9560 8.9560 7.2916 4.1522e-05
8.5321 8.5321 8.5321 7.2897 5.9293e-05
8.0971 8.0971 8.0971 7.2878 8.5458e-05
7.6634 7.6634 7.6634 7.2859 1.2304e-04
7.2393 7.2393 7.2393 7.2842 1.7572e-04
6.8297 6.8297 6.8297 7.2827 2.4793e-04
6.4366 6.4366 6.4366 7.2813 3.4500e-04
6.0600 6.0600 6.0600 7.2803 4.7343e-04
5.6989 5.6989 5.6989 7.2796 6.4130e-04
5.3515 5.3515 5.3515 7.2791 8.5873e-04
5.0159 5.0159 5.0159 7.2787 1.1385e-03
4.6904 4.6904 4.6904 7.2784 1.4967e-03
4.3732 4.3732 4.3732 7.2781 1.9539e-03
4.0627 4.0627 4.0627 7.2779 2.5366e-03

Continued on next page...
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T(10%) (K) R(10'%) (cm) cm (gr/cm?)
1 2 3

4.0000 4.0000 4.0000 72777 3.2788e-03
4.0000 3.9650 3.9650 7.2775 4.2243e-03
4.0000 3.9300 3.9300 7.2774 5.4295e-03
4.0000 3.8950 3.9300 7.2772 6.9662e-03
4.0000 3.8600 3.9450 7.2770 8.9261e-03
4.0000 3.8950 3.9620 7.2769 1.1426e-02
4.0000 3.9300 3.9800 7.2767 1.4614e-02
4.0000 3.9650 4.0000 7.2766 1.8679e-02
4.0000 4.0000 4.0150 7.2764 2.3861e-02
4.0301 4.0301 4.0301 7.2762 3.0463e-02
4.0690 4.0690 4.0690 7.2759 3.8868e-02
4.1099 4.1099 4.1099 7.2757 4.9563e-02
4.1496 4.1496 4.1496 7.2754 6.3160e-02
4.1938 4.1938 4.1938 7.2751 8.0427e-02
4.2327 4.2327 4.2327 7.2748 1.0234e-01
4.2814 4.2814 4.2814 7.2745 1.3010e-01
4.3177 4.3177 4.3177 7.2742 1.6529¢-01
4.3717 4.3717 4.3717 7.2739 2.0976e-01
4.4033 4.4033 4.4033 7.2736 2.6604e-01
4.4627 4.4627 4.4627 7.2733 3.3700e-01
4.4899 4.4899 4.4899 7.2730 4.2675e-01
4.5524 4.5524 4.5524 7.2727 5.3975e-01
4.5758 4.5758 4.5758 7.2724 6.8268e-01
4.6421 4.6421 4.6421 7.2721 8.6236e-01
4.6641 4.6641 4.6641 7.2718 1.0895e4-00
4.7396 4.7396 4.7396 7.2715 1.3736e+4-00
4.7636 4.7636 4.7636 7.2712 1.7314e+4-00
4.8609 4.8609 4.8609 7.2709 2.1722e+00
4.8930 4.8930 4.8930 7.2706 2.7195e+00
5.0349 5.0349 5.0349 7.2703 3.3664e+00
5.0831 5.0831 5.0831 7.2700 4.1411e+00
5.3029 5.3029 5.3029 7.2698 4.9755e+00
5.3789 5.3789 5.3789 7.2695 5.9031e+00
5. 7875 5.7875 5.7875 7.2693 6.6896e-+00
6.1403 6.1403 6.1403 7.2692 7.2867e+00
6.4542 6.4542 6.4542 7.2690 7.8015e+00
6.7583 6.7583 6.7583 7.2689 8.2798e+00
7.0439 7.0439 7.0439 7.2688 8.7490e+-00
7.3151 7.3151 7.3151 7.2687 9.2304e+00

Continued on next page...
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T(10%) (K) R(10'%) (cm) cm (gr/cm?)
1 2 3

7.5765 7.5765 7.5765 7.2686 9.7399¢+-00
7.8310 7.8310 7.8310 7.2685 1.0290e+-01
8.0801 8.0801 8.0801 7.2684 1.0894e+-01
8.3247 8.3247 8.3247 7.2682 1.1564e4-01
8.5653 8.5653 8.5653 7.2681 1.2314e+4-01
8.8024 8.8024 8.8024 7.2679 1.3161e+-01
9.0364 9.0364 9.0364 7.2678 1.4124e+4-01

Table B.1.: Modified temperature profiles for solar chromosphere models.

B.2. Models with different gravities

The final output temperature profiles for models of different gravities are listed below.
They only include temperature T in Kelvins and radius R in centimeters. Fach one of
them consists in 64 points corresponding to the layers that constitute the photospheres
and chromospheres. Columns are numbered according to the value of log(g).

T(10%) (K) R (cm)
50 44 4.0 35 5.0(10") 4.4(101) 4.0(10'!) 3.5(10')

20.000 19.931 19.999 19.999  7.3064 3.6501 1.1571 2.0630
1.0000 9.9655 9.0000 9.0000  7.2965 3.6466 1.1555 2.0592
9.7061 9.8405 8.9983 8.9983  7.2951 3.6464 1.1555 2.0592
9.3531 9.6686 8.9957 8.9958  7.2935 3.6462 1.1555 2.0592
8.9560 9.4477 8.9917 8.9919  7.2916 3.6459 1.1555 2.0592
8.5321 9.1816 8.9855 8.9858  7.2897 3.6456 1.1555 2.0591
8.0971 8.8790 8.9758 8.9762  T7.2878 3.6452 1.1555 2.0591
7.6634 8.5500 8.9608 8.9614  7.2859 3.6449 1.1555 2.0591
7.2393 8.2041 8.9377 8.9386  7.2842 3.6445 1.1555 2.0591
6.8297 7.8489 8.9022 8.9035  7.2827 3.6442 1.1555 2.0591
6.4366 7.4894 8.8485 8.8501  7.2813 3.6439 1.1555 2.0590
6.0600 7.1285 8.7681 8.7700  7.2803 3.6436 1.1554 2.0589
5.6989 6.7682 8.6506 8.6520  7.2796 3.6435 1.1554 2.0587
5.3515  6.4093 8.4835 8.4830  7.2791 3.6433 1.1553 2.0585
5.0159 6.0521 8.2548 8.2492  7.2787 3.6432 1.1552 2.0582
4.6904 5.6967 7.9556 7.9396  7.2784 3.6431 1.1550 2.0578
4.3732  5.3431 7.5836 7.5496  7.2781 3.6430 1.1548 2.0573

Continued on next page...

73



B. Temperature profiles

T(10°) (K) R (cm)
50 44 4.0 35 5.0(100) 4.4(10) 4.0(10") 3.5(10M)
4.0627 4.9911  7.1443  7.0829 7.2779  3.6429  1.1546  2.0566
4.0000 4.6406  6.6496  6.5516  7.2777  3.6428  1.1544  2.0559
3.9650 4.2011  6.1154 59708 7.2775  3.6427  1.1542  2.0552
39300 3.9425 55580 53569 7.2774  3.6427  1.1540  2.0547
3.9300 3.9646  4.9914 47291 7.2772  3.6427  1.1539  2.0544
3.9450 3.9897 44247 41000 7.2770  3.6426  1.1539  2.0542
3.9620 4.0178 41800  4.1000 7.2769  3.6426  1.1538  2.0540
3.9300 4.0487  4.1500  4.1000 7.2767  3.6425  1.1537  2.0538
40000 4.0821 41200  4.1000 7.2766  3.6425  1.1537  2.0537
40150 4.1177 41100  4.1000 7.2764  3.6425  1.1536  2.0535
4.0301 4.1553 41000  4.1000 7.2762  3.6424  1.1536  2.0533
4.0690 4.1947 41000  4.1000 7.2759  3.6424  1.1535  2.0532
41099 4.2355 41204 41041 7.2757  3.6423  1.1535  2.0530
41496 4.2774 41648  4.1497 7.2754  3.6422  1.1534  2.0529
41938 4.3199 42094 41949 7.2751  3.6422  1.1534  2.0527
42327 4.3626 42545  4.2403 7.2748  3.6421  1.1533  2.0524
42814 4.4049 43003 42859 7.2745  3.6420  1.1532  2.0522
43177 4.4466  4.3465 43316 7.2742  3.6419  1.1532  2.0519
A3717 44874 43931 43776 7.2739  3.6419  1.1531  2.0517
44033 4.5270 44398  4.4237 7.2736  3.6418  1.1530  2.0514
44627 45661 44863 44697 7.2733  3.6417  1.1529  2.0511
44899 4.6032  4.5325 45159  7.2730  3.6416  1.1528  2.0509
45524 4.6414 45786 4.5626 7.2727  3.6416  1.1528  2.0506
45758 4.6765  4.6252  4.6107 7.2724  3.6415  1.1527  2.0504
4.6421 4.7156  4.6729  4.6608 7.2721  3.6414  1.1526  2.0501
46641 4.7512 47228 47139  7.2718  3.6413  1.1525  2.0499
47396 4.7954  A7763 47707  7.2715  3.6412  1.1524  2.0496
47636 4.8373  4.8348  4.8324 7.2712  3.6412  1.1523  2.0493
48609 4.8957 49005  4.9006 7.2709  3.6411  1.1523  2.0491
48930 4.9558  4.9773 49794 7.2706  3.6410  1.1522  2.0488
50349 5.0457 50699 50718 7.2703  3.6409  1.1521  2.0485
50831 51464 51865 51869 7.2700  3.6409  1.1520  2.0483
53029 53000  5.3396 53376 7.2698  3.6408  1.1519  2.0480
53780 54851 55376 55426 7.2695  3.6407  1.1518  2.0477
57875 5.7769 58155 5.7777  7.2693  3.6407  1.1517  2.0475
6.1403 6.1574  6.1845  6.1994 7.2692  3.6406  1.1517  2.0473
6.4542 6.4406  6.4979  6.4935 7.2690  3.6406  1.1516  2.0472
6.7583 6.7148  7.3096  7.3039 7.2689  3.6406  1.1516  2.0471
7.0439 6.9807  7.7665  7.8186 7.2688  3.6405  1.1516  2.0470
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B. Temperature profiles

T(10°) (K) R (cm)
50 44 4.0 35 5.0(100) 4.4(10') 4.0(10") 3.5(10M)
7.3151 7.2415 81396 82104 7.2687  3.6405  1.1515  2.0469
7.5765 7.5002 84590 85279 7.2686  3.6405  1.1515  2.0469
78310 7.7580 87475 88072 7.2685  3.6404  1.1515  2.0468
8.0301 8.0156  9.0180  9.0666 7.2684  3.6404  1.1515  2.0467
8.3247 8.2727 92779 93154 7.2682  3.6403  1.1514  2.0466
8.5653 8.5289  9.5317  9.5590 7.2681  3.6403  1.1514  2.0465
8.8024 8.7837 97822  9.8010 7.2679  3.6403  1.1513  2.0464
9.0364 9.0370  1.0031  1.0043 7.2678  3.6402  1.1513  2.0462

Table B.2.: Temperature profiles of the models with different gravities.
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